![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(VP=\left(3+\sqrt{6}\right)^2\)
\(=3^2+2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=9+6\sqrt{6}+6\)
\(=15+6\sqrt{6}\)≠VP
=> Sai đề rồi bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn chỉ cần để ý tách hằng là oke
chỉ cho này \(11+6\sqrt{2}=3^3+2.3.\sqrt{2}+\sqrt{2}^2=\left(3+\sqrt{2}\right)^2\)
và cái đằng sau nữa cũng tương tự \(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
biểu thức \(< =>\sqrt{4}.\left(3+\sqrt{2}\right)^2-\sqrt{9}.\left(3-\sqrt{2}\right)^2\)ok ?
câu b tự làm đi
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20+10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
= 5
\(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)
\(=\dfrac{\sqrt{3}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-\sqrt{3}+3+\sqrt{2}}{\sqrt{5}+1+\sqrt{2}-\sqrt{2}-\sqrt{5}}\)
\(=3\)
\(\sqrt{\left|4\sqrt{6}-11\right|}-\sqrt{4\sqrt{6}+11}\)
Vì \(4\sqrt{6}< 11\) nên khi thoát dấu GTTĐ, ta được:
\(\sqrt{11-4\sqrt{6}}-\sqrt{11+4\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\left(2\sqrt{2}\right).\sqrt{3}+\left(2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\left(2\sqrt{2}\right).\sqrt{3}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+2\sqrt{2}\right)^2}\)
=|√3-2√2|-|√3+2√2|
= 2√2-√3-√3-2√2
= -2√3
\(\sqrt{\left|4\sqrt{6}-11\right|}-\sqrt{4\sqrt{6}+11}\)
Ta có:
\(4\sqrt{6}< 11\)
\(\Rightarrow\sqrt{11-4\sqrt{6}}-\sqrt{11+4\sqrt{6}}\)
\(\Rightarrow\sqrt{\left(\sqrt{3}\right)^2-2\left(2\sqrt{2}\right)\sqrt{3}+\left(2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2+2\left(2\sqrt{2}\right)\sqrt{3}+\left(2\sqrt{2}\right)^2}\)
Từ đây rút gọn căn của 2 bên rồi tính nốt