\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Ta có:\(\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)=

=\(4+\sqrt{10+2\sqrt{5}}+2.\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right).\left(4-\sqrt{10+2\sqrt{5}}\right)}+\)\(4-\sqrt{10+2\sqrt{5}}\)

=\(8\)\(+2.\sqrt{16-10-2\sqrt{5}}\)

=\(8+2\sqrt{6-2\sqrt{5}}\)

=\(8+2.\sqrt{5-2\sqrt{5}+1}\)

=\(8+2.\sqrt{\left(\sqrt{5}-1\right)^2}\)

=\(8+2.\left(\sqrt{5}-1\right)\)

=\(8+2\sqrt{5}-2\)

=\(6+2\sqrt{5}\)

=\(\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

21 tháng 7 2018

Bình phương 2 vế rồi tính như bth

21 tháng 7 2018

giúp mk ý này luôn đi 

\(8m^3-18m^2+21m-34=0.\)

này làm bài kia tới chỗ này rồi phân tích kiểu sao đây

24 tháng 5 2017

Hỏi đáp Toán

15 tháng 7 2015

1 bài muốn chết tới 3 bài tớ vào quan tài nằm trước

24 tháng 5 2021

a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)

\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)

b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)

c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

làm nốt 2 câu cuối nhé, cách làm y trên 

25 tháng 5 2021

d/\(\sqrt{9+4\sqrt{5}}\)

\(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\left|2+\sqrt{5}\right|\)

=  \(2+\sqrt{5}\)

e/ \(\sqrt{21+4\sqrt{5}}\)

\(\sqrt{20+4\sqrt{5}+1}\)

=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)

=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(\left|2\sqrt{5}+1\right|\)

\(2\sqrt{5}+1\)