Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\) ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))
\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)
\(=\sqrt{4\cdot\sqrt{7}}\)
\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)
\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)
\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}\)
cuối lười tính nên thôi nhá :>
\(a.\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}\)
\(=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=\sqrt{\left(16-15\right)}=\sqrt{1}=1\)
\(b.\sqrt{7-\sqrt{47}}.\sqrt{14+2\sqrt{47}}\)
\(=\sqrt{7-\sqrt{47}}.\sqrt{2\left(7-\sqrt{47}\right)}\)
\(=\sqrt{2\left(7-\sqrt{47}\right)\left(7+\sqrt{47}\right)}=\sqrt{2\left(49-47\right)}=\sqrt{2^2}=\sqrt{4}=2\)
\(c.\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=\sqrt{16-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=\sqrt{16-10-2\sqrt{5}}=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)
\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)
\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)
\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)
\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)
\(=\)\(3\sqrt{6}+9\)
Chúc bạn học tốt ~
\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)
\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) )
\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)
\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) )
\(=\)\(1\)
Chúc bạn học tốt ~
PS : mới lớp 8 sai thì thông cảm >.<
\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)
\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)
\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)
\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)
\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)
\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))
\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
\(=-2\)
\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)
Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)
Ta có cái ban đầu
\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=
\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)
\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)
a) \(A=\sqrt{10+\sqrt{99}}=\sqrt{10+3\sqrt{11}}=\frac{1}{\sqrt{2}}.\sqrt{20+6\sqrt{11}}\)
\(=\frac{1}{\sqrt{2}}.\sqrt{\left(3+\sqrt{11}\right)^2}=\frac{3+\sqrt{11}}{2}\)
b) \(B=\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
c) bn ktra lại đề
d) ĐK: \(x\ge0\)
\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)
e) đk: \(x\ge-1\)
\(\sqrt{2x+3+2\sqrt{x^2+3x+2}}=\sqrt{x+1+2\sqrt{\left(x+1\right)\left(x+2\right)}+x+2}\)
\(=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)
\(a\text{) }\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
\(b\text{) }\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\\ =\sqrt{18+3+2\sqrt{54}}-\sqrt{18+3-2\sqrt{54}}\\ =\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\\ =\sqrt{18}+\sqrt{3}-\sqrt{18}+\sqrt{3}\\ =2\sqrt{3}\)
\(d\text{) }\sqrt{x+1+2\sqrt{x}}\left(x\ge0\right)\\ =\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)
\(e\text{) }\sqrt{2x+3+2\sqrt{x^2+3x+2}}\left(x\le-2;x\ge-1\right)\\ =\sqrt{\left(x+2\right)+\left(x+1\right)+2\sqrt{\left(x+1\right)\left(x+2\right)}}=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)
Xem lại đề câu c nha.
a)\(\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
b)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
=\(\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\sqrt{3^2}}\)
=\(\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
=\(3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}\)
=\(2\sqrt{3}\)
c)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
ÁP dụng HĐT \(\sqrt{a+b}\pm\sqrt{a-b}=\sqrt{2\left(a.\sqrt{a^2\pm b}\right)}\)ta có:
=\(\sqrt{2\left(4+\sqrt{4^2-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{16-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{6-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}-1\right)^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{5}-1\right)}\)
=\(\sqrt{2\left(3+\sqrt{5}\right)}\)
=\(\sqrt{6+\sqrt{5}}=\sqrt{5}+1\)
d)\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{x}.1+1^2}=\sqrt{x}+1\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\left(5-\sqrt{3}\right)}}=\sqrt{5\sqrt{3}+\sqrt{25-5\sqrt{3}}}\)
Trần Đức Thắng lm nốt đi