\(\sqrt{49-8\sqrt{3}}\)

Tính?

Với những dạng căn phức tạp như vậy thì biến đổ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

\(\sqrt{49-8\sqrt{3}}=\sqrt{48-2\cdot4\sqrt{3}+1}=\sqrt{16\cdot3-2\cdot4\sqrt{3}+1}=\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\sqrt{3}+1}\)

\(=\sqrt{\left(4\sqrt{3}-1\right)^2}=4\sqrt{3}-1\)

25 tháng 6 2018

 biến đồi như bình thường ý

24 tháng 7 2019

\(\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{5-4\sqrt{5}+4}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}\)

=\(\sqrt{5}-2\)

24 tháng 7 2019

\(\sqrt{16-2\sqrt{55}}\)

=\(\sqrt{11-2\sqrt{11}.\sqrt{5}+5}\)

=\(\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

=\(\sqrt{11}-\sqrt{5}\)

31 tháng 3 2017

a) ĐS: 5.

b) = = = √9.√25 = 3.5 = 15.

c) ĐS: 45

d) ĐS: 25

29 tháng 5 2017

a. \(\sqrt{13^2-12^2}\)

=\(\sqrt{\left(13+12\right).\left(13-12\right)}\)

=\(\sqrt{25.1}\)

=\(\sqrt{25}.\sqrt{1}\)

=5.1

=5

b. \(\sqrt{17^2-8^2}\)

=\(\sqrt{\left(17+8\right).\left(17-8\right)}\)

=\(\sqrt{25.9}\)

=\(\sqrt{25}.\sqrt{9}\)

=5.3

=15

c. \(\sqrt{117^2-108^2}\)

=\(\sqrt{\left(117+108\right).\left(117-108\right)}\)

=\(\sqrt{225.9}\)

=\(\sqrt{225}.\sqrt{9}\)

=15.3

=45

d. \(\sqrt{313^2-312^2}\)

=\(\sqrt{\left(313+312\right).\left(313-312\right)}\)

=\(\sqrt{625.1}\)

=\(\sqrt{625}.\sqrt{1}\)

=25.1

=25

c.\(\sqrt{117^2-108^2}\)

11 tháng 6 2021

a, \(\sqrt{3+2\sqrt{2}}=\sqrt{\sqrt{2}^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)

b, \(\sqrt{3-2\sqrt{2}}=\sqrt{\sqrt{2}^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

c, \(\sqrt{8-2\sqrt{15}}=\sqrt{\sqrt{5}^2-2\sqrt{5.3}+\sqrt{3}^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được

VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

3 tháng 8 2017

a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)

28 tháng 6 2018

kuroba kaito \(\sqrt{25-4\sqrt{6}}=\sqrt{24-1}\) à?

28 tháng 6 2018

ko \(\sqrt{24}-1\) Nhã Doanh ,Nguyễn Thị Bình Yên

22 tháng 10 2018

\(\sqrt{\dfrac{a}{b}}\)=\(\dfrac{\sqrt{a}}{\sqrt{b}}\) với a,b<0

Ta có : \(\sqrt{\dfrac{-49}{-81}}\)=\(\sqrt{\dfrac{49}{81}}\)=\(\dfrac{7}{9}\)