\(\sqrt[4]{5x+71}\) + \(\sqrt[4]{5x+6}\) = 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

cái này là giải phương trình mn giải giúp e vs ạ

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)

\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)

Đặt \(\sqrt{x}=a\left(a>=0\right)\)

Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)

\(=12+16\left(12+5\sqrt{3}\right)\)

\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)

\(\Leftrightarrow x=a^2\simeq5,66\)

c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)

\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)

\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)

d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)

\(\Leftrightarrow3x-4001=0\)

hay x=4001/3

27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm

15 tháng 7 2018

1) Đk: \(x\ge4\)

\(\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\dfrac{x-3}{\sqrt{x-3}}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}+x-10}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2-16}+x-10=0\)

\(\Leftrightarrow\sqrt{x^2-16}=10-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-16=100-20x+x^2\\x\le10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x=116\\x\le10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{29}{5}\left(N\right)\\x\le10\end{matrix}\right.\)

Kl: x= 29/5

2) Đk: \(x\ge-1\)

\(x^2-5x+14=4\sqrt{x+1}\)

\(\Leftrightarrow x^4+25x^2+196-10x^3-140x+28x^2=16x+16\)

\(\Leftrightarrow x^4-10x^3+53x^2-156x+180=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3-7x^2+32x-60\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x^2-4x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-4x+20=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(N\right)\)

Kl: x=3

15 tháng 7 2018

cảm ơn nhìu

11 tháng 10 2018

Mik đăng câu hỏi mà ko thấy ai trả lời hết, với lại h mik giải được rồi nên đăng lên có ai tìm bài này thì có đáp án ha ( mấy CTV đừng hiểu lầm nhé)

a) \(x^2-13x+50=4\sqrt{x-3}\)

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow x^2-13x+50-4\sqrt{x-3}=0\)

\(\Leftrightarrow x^2-14x+x+49-3-+4-4\sqrt{x-3}=0\)

\(\Leftrightarrow(x^2-14x+49)+(x-3-4\sqrt{x-3}+4)=0\)

\(\Leftrightarrow\left(x-7\right)^2+\left(\sqrt{x-3}-2\right)^2=0\)

\(\Leftrightarrow\left(x-7\right)^2=\left(\sqrt{x-3}-2\right)^2\)

\(\Leftrightarrow x-7=-\sqrt{x-3}+2\)

\(\Leftrightarrow x-9=-\sqrt{x-3}\)

\(\Leftrightarrow x^2-18x+81=x-3\)

\(\Leftrightarrow x^2-19x+84=0\)

\(\Leftrightarrow\left(x+12\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy \(x\in\left\{7;12\right\}\)

11 tháng 10 2018

\(b)\dfrac{4x}{x^2-5x+6}+\dfrac{3x}{x^2-7x+6}=6\)

ĐKXĐ: \(x\ne1,2,3,6\)

Đặt \(t=x^2-6x+6\)

pt \(\Leftrightarrow\dfrac{4x}{t+x}+\dfrac{3x}{t-x}=6\)

\(\Leftrightarrow\dfrac{4x\left(t-x\right)+3x\left(t+x\right)}{\left(t+x\right)\left(t-x\right)}=6\)

\(\Leftrightarrow\dfrac{7tx-x^2}{t^2-x^2}=6\)

\(\Leftrightarrow7tx-x^2=6t^2-6x^2\)

\(\Leftrightarrow-6t^2+7xt+5x^2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(t-\dfrac{5}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\t-\dfrac{5}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+6-\dfrac{5}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+\dfrac{13}{3}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{42}}{3}\\x=\dfrac{9-\sqrt{42}}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{-1}{2};\dfrac{9\pm\sqrt{42}}{3}\right\}\)