Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\frac{165^2-124^2}{164}}=\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}\)
\(=\sqrt{\frac{11849}{164}}=\sqrt{72,25}=8,5\)
b)\(\sqrt{\frac{149^2-76^2}{457^2-384^2}}=\sqrt{\frac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}\) \(=\sqrt{\frac{73.225}{73.841}}=\sqrt{\frac{225}{841}}=\sqrt{\frac{15^2}{29^2}}=\frac{15}{29}\)
c)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\) \(=\sqrt{2^2+3+2.2.\sqrt{3}}-\sqrt{2^2+3-2.2.\sqrt{3}}\)
\(=\sqrt{2^2+2.2.\sqrt{3}+\sqrt{3}^2}-\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3}^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}=\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{x^2+4}=x+2\)
\(x+2=\left(x+2\right)^2\)
\(x+2=x^2+4x+4\)
\(x^2+3x+2=0\)
\(x^2+x+2x+2=0\)
\(x\left(x+1\right)+2\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+2\right)=0\)
- (x+1)=0=>x=-1
- (x+2)=0=>x=-2
Tại năm nay mk cũng lên lớp 9 nên cx k bt đúng hay sai nữa.Nếu đúng thì k cho mk nhé ^_^
\(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+\sqrt{3}\right)^2-2\)
\(=3+2\sqrt{3}+1-2\)
\(=2\sqrt{3}+2\)
\(=2\left(\sqrt{3}+1\right)\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2.\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{3+\sqrt{5}}\right)+\)\(\left(\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2.\left(3-\sqrt{5}\right)+3+\sqrt{5}\)
\(=6+6-2\sqrt{5}\)
\(=12-2\sqrt{5}\)
\(=2\left(6-\sqrt{5}\right)\)
a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)
Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)
Ta có phương trình:
\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)
\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)
\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))
\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)
\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)
Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)
\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)
\(x_2=3+\sqrt{11}\)(TMĐK)
Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............
b) ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)
\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)
Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)
Vậy phương trình đã cho có nghiệm duy nhất là ...
Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa
Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)
c) ĐKXĐ \(x\ge1\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)
\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)
* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với
\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)
* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)
* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)
Vậy phương trình đã cho có 2 nghiệm phân biệt .......
'
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
đến đây bạn áp dụng đẳng thức trên để tính gtbt nhé: kết quả: 9/10
\(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)vì \(\sqrt{3}-1>0\)
Cách giải bài toán có dạng \(\sqrt{a-b\sqrt{c}}\left(a+b\sqrt{c}\right)\)
Dùng máy tính sử dụng phương trình bậc 2
ô đầu bấm 1
ô thứ 2 bấm -a
ô thứ 3 bấm \(\frac{\left(b\sqrt{c}\right)^2}{4}\)
Máy sẽ ra hai nghiệm x1 x2
Khi đó bài toán có dạng \(\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\)
\(\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=|\sqrt{3}-1|\)
\(=\sqrt{3}-1\)