\(\sqrt{4-2\sqrt{3}}\) giải giúp nhé

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

\(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)vì \(\sqrt{3}-1>0\)

6 tháng 6 2021

Cách giải bài toán có dạng \(\sqrt{a-b\sqrt{c}}\left(a+b\sqrt{c}\right)\)    

Dùng máy tính sử dụng phương trình bậc 2 

ô đầu bấm 1 

ô thứ 2 bấm -a 

ô thứ 3 bấm \(\frac{\left(b\sqrt{c}\right)^2}{4}\)   

Máy sẽ ra hai nghiệm x1 x2 

Khi đó bài toán có dạng \(\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\)

\(\sqrt{4-2\sqrt{3}}\)   

\(=\sqrt{3-2\sqrt{3}+1}\)   

\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}\)   

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)   

\(=|\sqrt{3}-1|\)   

\(=\sqrt{3}-1\)

31 tháng 5 2017

a) \(\sqrt{\frac{165^2-124^2}{164}}=\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}\)

    \(=\sqrt{\frac{11849}{164}}=\sqrt{72,25}=8,5\)

b)\(\sqrt{\frac{149^2-76^2}{457^2-384^2}}=\sqrt{\frac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}\) \(=\sqrt{\frac{73.225}{73.841}}=\sqrt{\frac{225}{841}}=\sqrt{\frac{15^2}{29^2}}=\frac{15}{29}\)

c)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\) \(=\sqrt{2^2+3+2.2.\sqrt{3}}-\sqrt{2^2+3-2.2.\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\sqrt{3}^2}-\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3}^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}=\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\) 

\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)

10 tháng 8 2017

\(\sqrt{x^2+4}=x+2\)

\(x+2=\left(x+2\right)^2\)

\(x+2=x^2+4x+4\)

\(x^2+3x+2=0\)

\(x^2+x+2x+2=0\)

\(x\left(x+1\right)+2\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+2\right)=0\)

  • (x+1)=0=>x=-1
  • (x+2)=0=>x=-2

Tại năm nay mk cũng lên lớp 9 nên cx k bt đúng hay sai nữa.Nếu đúng thì k cho mk nhé ^_^

18 tháng 8 2017

của bn đúng rùi đó .mk giải dc hết rùi

4 tháng 12 2017

\(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)

\(=\left(1+\sqrt{3}\right)^2-2\)

\(=3+2\sqrt{3}+1-2\)

\(=2\sqrt{3}+2\)

\(=2\left(\sqrt{3}+1\right)\)

\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2.\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{3+\sqrt{5}}\right)+\)\(\left(\sqrt{3+\sqrt{5}}\right)^2\)

\(=3-\sqrt{5}+2.\left(3-\sqrt{5}\right)+3+\sqrt{5}\)

\(=6+6-2\sqrt{5}\)

\(=12-2\sqrt{5}\)

\(=2\left(6-\sqrt{5}\right)\)

4 tháng 12 2017

Cảm ơn bạn nhiều nhé. 

10 tháng 6 2019

a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)

Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)

Ta có phương trình:

\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)

\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)

\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))

\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)

Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)

\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)

\(x_2=3+\sqrt{11}\)(TMĐK)

Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............

b) ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)

\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)

Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)

Vậy phương trình đã cho có nghiệm duy nhất là ...

Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa

Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)

c) ĐKXĐ \(x\ge1\)

 \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)

\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)

* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với

\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)

* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)

* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)

Vậy phương trình đã cho có 2 nghiệm phân biệt .......

'

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

2 tháng 9 2018

Với  mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

đến đây bạn áp dụng đẳng thức trên để tính gtbt nhé:  kết quả:  9/10