\(\sqrt{3x^2-1}+\sqrt{x^2-x}+x\sqrt{x^2+1}= \frac{1}{2\sqrt{2} } \)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}\right)^2-1^2\)

\(=x-1\)

b) Ta có: \(\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}\right)^3+1^3\)

\(=x\sqrt{x}+1\)

c) Ta có: \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=2x-2\sqrt{x}+\sqrt{x}-1\)

\(=2x-\sqrt{x}-1\)

Bài 2: Tìm x

a) Ta có: \(\sqrt{9x^2+6x+1}=3x-2\)

\(\Leftrightarrow\left|3x+1\right|=3x-2\)(*)

Trường hợp 1: \(x\ge\frac{-1}{3}\)

(*)\(\Leftrightarrow3x+1=3x-2\)

\(\Leftrightarrow3x+1-3x+2=0\)

\(\Leftrightarrow3=0\)(vô lý)

Trường hợp 2: \(x< \frac{-1}{3}\)

(*)\(\Leftrightarrow-3x-1=3x-2\)

\(\Leftrightarrow-3x-1-3x+2=0\)

\(\Leftrightarrow-6x+1=0\)

\(\Leftrightarrow-6x=-1\)

hay \(x=\frac{1}{6}\)(loại)

Vậy: \(S=\varnothing\)

b)Trường hợp 1: \(x\ge0\)

Ta có: \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: S={x|x>4}

29 tháng 7 2020

Cảm ơn ạ

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

14 tháng 8 2019

\(a,x-3\sqrt{x}+2\)

\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)

14 tháng 8 2019

câu a mình nhìn nhầm :

\(=\left(x-1\right)\left(x+2\right)\)

21 tháng 8 2019
https://i.imgur.com/7Gi05HK.jpg
21 tháng 8 2019
https://i.imgur.com/lpCsO1V.jpg