Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
\(\Rightarrow A^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)^2\left(1-\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)\left(1-\frac{\sqrt{84}}{9}\right)^2}\)
\(A^3=2+3.\sqrt[3]{-\frac{1}{27}.\left(1+\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{-\frac{1}{27}.\left(1-\frac{\sqrt{84}}{9}\right)}\)
\(=2-\left(\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)}+\sqrt[.3]{\left(1-\frac{\sqrt{84}}{9}\right)}\right)\)
\(A^3=2-A\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\Rightarrow A=1\)
Đặt \(A=\sqrt[3]{\frac{9+2\sqrt{21}}{9}}+\sqrt[3]{\frac{9-2\sqrt{21}}{9}}\)
\(A^3=\frac{9+2\sqrt{21}+9-2\sqrt{21}}{9}+3\sqrt[3]{\frac{9^2-4\cdot21}{9^2}}A\)
\(A^3-2+A=0\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+A-1=0\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)
\(\Rightarrow A=1\)(ĐPCM)

Ta có \(\sqrt[3]{26+15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}\)
\(=\sqrt[3]{2^3+3.2^2\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}\)
Đặt \(x=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
Ta có \(x^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)
\(=9+\sqrt{80}+9-\sqrt{80}+3.\left(\sqrt[3]{9+\sqrt{80}}\right)^2\left(\sqrt[3]{9-\sqrt{80}}\right)+3.\left(\sqrt[3]{9-\sqrt{80}}\right)^2\left(\sqrt[3]{9+\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9^2-80}.x\)
\(=18+3x\)
Vậy \(x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
Vậy x = 3
Do đó \(M=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+3=2^2-3+3=4\)
Vậy M = 4.

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0

\(ĐKXĐ:\hept{\begin{cases}x\ne9\\x\ne64\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x-3}}+\frac{2\sqrt{x}-24}{x-9}\right).\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x-3}\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{7}{\sqrt{x}+3}\)
Để P nguyên \(\Leftrightarrow7⋮\sqrt{x}+3\) \(\left(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\right)\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)
Ta có bảng sau :
\(\sqrt{x}+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(\sqrt{x}\) | \(-2\)(ktm) | \(-4\)(ktm) | \(4\)(tm) | \(-10\)(ktm) |
\(x\) | \(ktm\) | \(ktm\) | \(16\) | \(ktm\) |
Vậy \(x=16\Leftrightarrow P\in Z\)
\(A=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
\(A^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)
\(=9+\sqrt{80}+9-\sqrt{80}+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)\(=18+3.A\)
<=> \(A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
<=> A=3
vì \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
Vậy A là một số nguyên