\(\sqrt{38-12\sqrt{5}}\)

giải giùm mình đi !! mình ''đúng'' cho ^^

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 )

a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)

Bài 2)

a)\(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)

\(\Leftrightarrow\left(6x-1\right)^2=25\)

\(\Rightarrow6x-1=5\)

\(\Leftrightarrow6x=6\)

\(\Rightarrow x=1\)

b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)

\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)

\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)

\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này

P/s tham khảo nha

25 tháng 8 2018

1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)

=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)

=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)

=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)

=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)

=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)

=\(\sqrt{3}+1+1-\sqrt{3}\)

=\(1+1\)=\(2\)

2) a) \(\sqrt{36x^2-12x+1}=5\)

<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)

<=>\(\sqrt{\left(6x-1\right)^2}=5\)

<=>\(|6x-1|=5\)

Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)

Nên \(|6x-1|=6x-1\)

Ta có \(|6x-1|=5\)

<=> \(6x-1=5\)

<=> \(6x=6\)

<=> \(x=1\)(thỏa)

Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)

Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)

Ta có \(|6x-1|=5\)

<=> \(1-6x=5\)

<=> \(-6x=4\)

<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)

Vậy \(x=1\)và \(x=\frac{-2}{3}\)

b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)

<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)

<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)

<=>\(-4\sqrt{x-5}=12\)

<=> \(\sqrt{x-5}=-3\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)

<=>\(x-5=9\)

<=>\(x=14\)

Vậy x=14

Kết bạn với mình nhá

7 tháng 6 2017

hề hề,,,, chả hỉu sao tự nhiên muốn trình bày mấy bài này 

\(\sqrt{36+12\sqrt{5}}=\sqrt{...}\)

sao lại ko tách đc nhỉ

3 tháng 6 2017

ta có \(\sqrt{x-2\sqrt{x-9}}=\sqrt{\left(x-9\right)-2\sqrt{x-9}+1+8}=\sqrt{\left(1-\sqrt{x-9}\right)^2+\left(\sqrt{8}\right)^2}.\)

   Tương tự ta cũng có \(\sqrt{x+2\sqrt{x-9}}=\sqrt{\left(\sqrt{x-9}+1\right)^2+\left(\sqrt{8}\right)^2}\)

    Áp dụng BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)   ( bẠN TỰ CM NHA)

          Dấu bằng xảy ra khi ad=bc

Ta có \(A\ge\sqrt{\left(1-\sqrt{x-9}+\sqrt{x-9}+1\right)^2+\left(\sqrt{8}+\sqrt{8}\right)^2}\)

    \(\Rightarrow A\ge6\)

Dấu bằng xảy ra khi \(\left(1-\sqrt{x-9}\right)\sqrt{8}=\left(\sqrt{x-9}+1\right)\sqrt{8}\)

                             hay X = 9

Vậy Min A= 6 khi X=9

3 tháng 6 2017

Điều kiện: x\(\ge\)9

\(A=\sqrt{x-2\sqrt{x-5-4}}+\sqrt{x+2\sqrt{x-5-4}}=\sqrt{x-2\sqrt{x-9}}+\sqrt{x+2\sqrt{x-9}}\)

\(A=\sqrt{x-9-2\sqrt{x-9}+1+8}+\sqrt{x-9+2\sqrt{x-9}+1+8}\)

\(A=\sqrt{\left(\sqrt{x-9}-1\right)^2+8}+\sqrt{\left(\sqrt{x-9}+1\right)^2+8}\)

Ta nhận thấy: \(\sqrt{\left(\sqrt{x-9}-1\right)^2+8}\ge\sqrt{8}\) Và \(\sqrt{\left(\sqrt{x-9}+1\right)^2+8}>\sqrt{9}\)Với mọi x\(\ge\)9

=>  A đạt giá trị nhỏ nhất khi \(\left(\sqrt{x-9}-1\right)^2=0\) <=> x=10

=> Giá trị nhỏ nhất của A là: \(\sqrt{8}+\sqrt{12}=2\sqrt{2}+2\sqrt{3}=2\left(\sqrt{2}+\sqrt{3}\right)\)

Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được

VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

3 tháng 8 2017

a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)

28 tháng 6 2017

=\(\sqrt{3+2\sqrt{3}+1}\)+\(\sqrt{3-2\sqrt{3}+1}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)+\(\sqrt{\left(\sqrt{3}-1\right)^2}\)

=\(\sqrt{3}+1+\sqrt{3}-1\)

=\(2\sqrt{3}\)

k mk nha

28 tháng 6 2017

\(=\left(-1\right)\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}\)

\(=\left(-1\right)\cdot\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)\)

\(=\left(-\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)\)

\(=-2\)