Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hề hề,,,, chả hỉu sao tự nhiên muốn trình bày mấy bài này
\(\sqrt{36+12\sqrt{5}}=\sqrt{...}\)
sao lại ko tách đc nhỉ
~ ~ ~
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)
\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)
\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)
\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)
\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)
\(>\sqrt{5}-\dfrac{3}{2}=B\)
~ ~ ~
\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)
\(=16\sqrt{3}-35\)
\(>16\sqrt{3}-36=B\)
~ ~ ~
\(\sqrt{29-12\sqrt{5}}=\sqrt{20-2.2\sqrt{5}.3+9}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}-3=2\sqrt{5}-3\)
Đúng cho mình đi dẫ
\(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+\sqrt{3}\right)^2-2\)
\(=3+2\sqrt{3}+1-2\)
\(=2\sqrt{3}+2\)
\(=2\left(\sqrt{3}+1\right)\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2.\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{3+\sqrt{5}}\right)+\)\(\left(\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2.\left(3-\sqrt{5}\right)+3+\sqrt{5}\)
\(=6+6-2\sqrt{5}\)
\(=12-2\sqrt{5}\)
\(=2\left(6-\sqrt{5}\right)\)
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
\(\sqrt{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=50\)
Vậy x = 50
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=\left(2+3\right)\sqrt{3}\)
\(\Leftrightarrow x+1=5\)
\(\Leftrightarrow x=4\)
Vậy x = 4
\(\sqrt{9\left(x-1\right)}=21\\9\left(x-1\right)=21^2\\x-1=49\\ x=48 \)\(\sqrt{3}x+\sqrt{3}=2\sqrt{3}+3\sqrt{3}\\ 0=\sqrt{3}\left(2+3-1-x\right)\\ 0=\sqrt{3}\left(4-x\right)\\ x=4\\ \)
\(\sqrt{36+12\sqrt{5}}=\sqrt{30+2.6.\sqrt{5}+6}=\sqrt{\left(\sqrt{30}\right)^2+2.\sqrt{30}.\sqrt{6}+\left(\sqrt{6}\right)^2}\)
\(=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\left|\sqrt{30}+\sqrt{6}\right|=\sqrt{30}+\sqrt{6}\)