Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)
\(\Leftrightarrow2\sqrt{3}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
a/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{1+2\cdot1\cdot2\sqrt{2}+8}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
b/ \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{3\left(5+2\sqrt{6}\right)}-\sqrt{2\left(5+2\sqrt{6}\right)}\)
\(=\sqrt{15+6\sqrt{6}}-\sqrt{10+4\sqrt{6}}\)
\(=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2+\sqrt{6}\right)^2}\)
\(=3+\sqrt{6}-2-\sqrt{6}=1\)
c/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}+\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}\)
\(=\sqrt{5-1-2\sqrt{3}}+\sqrt{3+1+2\sqrt{3}}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{3}-1+1+\sqrt{3}=2\sqrt{3}\)
\(1.\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\)
\(2.\sqrt{3+\sqrt{5}}=\dfrac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1}{\sqrt{2}}\)
\(3.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}-\sqrt{3}\)
\(4.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(5.\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{4+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
\(6.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:
\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)
\(=10-9B\)
Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)
Vậy \(B=1\)
À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)
\(=\sqrt[3]{25-52}=-3\)