Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 52 = 25 nên √25 = 5
b) Vì 72= 49 nên √49 = 7
c) Vì 12 = 1 nên √1 = 1
d) Vì (23)2=49(23)2=49 = nên √49=23
a) Vì 52=25 nên \(\sqrt{25}=5\).
b) Vì 72=49 nên \(\sqrt{49}=7\).
c) Vì 1n=1 nên \(\sqrt{1}=1\). (\(\forall n\in N\))
d) Vì \(\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) nên \(\sqrt{\dfrac{4}{9}}=\dfrac{\sqrt{4}}{\sqrt{9}}=\dfrac{2}{3}\).
a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)
\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)
Ta có\(8< 16\Rightarrow\sqrt{8}< \sqrt{16}=4\)
và \(5< 9\Rightarrow\sqrt{5}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{16}-\sqrt{9}=4-3=1\)
Vậy \(\sqrt{8}-\sqrt{5}< 1\)
Ta có \(\sqrt{63-27}=\sqrt{36}=6\)
lại có\(63< 64\Rightarrow\sqrt{63}< \sqrt{64}=8\)và \(27>4\Rightarrow\sqrt{27}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{4}=8-2=6\)
mà\(\sqrt{63-27}=6\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
Vậy\(\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
d: \(D=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)
\(=-4:\dfrac{13}{12}\)
\(=-4\cdot\dfrac{12}{13}=-\dfrac{48}{13}\)
e: \(E=5\cdot4-4\cdot3+5-0.3\cdot20\)
=20-12+5-6
=8+5-6
=13-6=7
f: \(F=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{2}:6\)
\(=\dfrac{9}{4}+\dfrac{5}{6}-\dfrac{3}{12}\)
\(=\dfrac{27}{12}+\dfrac{10}{12}-\dfrac{3}{12}=\dfrac{34}{12}=\dfrac{17}{6}\)
\(\frac{3}{4}+\frac{1}{4}:\left(-\frac{2}{3}\right)-\left(-5\right)\)
\(=\frac{3}{4}+\frac{1}{4}.\left(-\frac{3}{2}\right)+5\)
\(=\frac{3}{4}-\frac{3}{8}+5\)
\(=\frac{3}{8}+5=\frac{43}{8}\)
\(12.\left(\frac{2}{5}-\frac{5}{6}\right)^2=12.\left(-\frac{13}{30}\right)^2=12.\frac{169}{900}=\frac{169}{75}\)
\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}=4+6-3+5=12\)
\(\left(9\frac{3}{4}:3.4.2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)=\left(\frac{39}{4}:3.4.\frac{75}{34}\right):\left(-\frac{25}{16}\right)=\frac{975}{34}.\left(-\frac{16}{25}\right)=-\frac{312}{17}\)
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}=\frac{3+39}{91-7}=\frac{42}{84}=\frac{1}{2}\)
a) \(3-\sqrt{x}=\)0
\(\sqrt{x}=0+3\)
\(\sqrt{x}=3\)
mà :\(\sqrt{9}=3\)
=> x = 9
\(\sqrt[3]{27}=3\) vì \(3^3=27\)
\(\sqrt[3]{27}=\sqrt[3]{3^3}=3\)
Vậy: \(\sqrt[3]{27}=3\)