Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{5+\sqrt{24}}-\sqrt{2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{2}=\left|\sqrt{3}+\sqrt{2}\right|-\sqrt{2}=\sqrt{3}+\sqrt{2}-\sqrt{2}=\sqrt{3}\)
b/ \(\frac{3-2\sqrt{3}}{\sqrt{3}-2}=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}=\sqrt{3}\)
c/ \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)
d/ \(\frac{1}{1-\sqrt{2}}-\frac{1}{1+\sqrt{2}}=\frac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\frac{2\sqrt{2}}{1-2}=-2\sqrt{2}\)
a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)
\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)
\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)
b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)
\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)
\(=\frac{14\sqrt{3}}{3}-12\)
c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)
\(=\left(3-1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)
...
a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)
\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)
\(=3\sqrt{2}-2\sqrt{3}\)
b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)
\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)
\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)
c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)
\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=75-20=55\)
d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)
\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)
\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)
\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
\(=2\sqrt[3]{3}+5\cdot\dfrac{3}{2}-7\cdot4\sqrt[3]{3}+\dfrac{1}{3}\sqrt[3]{3}+5\sqrt[3]{3}\)
\(=-\dfrac{62}{3}\sqrt[3]{3}+\dfrac{15}{2}\)