Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)
\(\Leftrightarrow2\sqrt{2x-5}=0\)
\(\Leftrightarrow x=\frac{5}{2}\left(n\right)\)
Vay PT co nghiem la \(x=\frac{5}{2}\)
a) \(\sqrt{2x+4+6\sqrt{2x-5}}-\sqrt{2x-4-2\sqrt{2x-5}}\)
\(=\sqrt{2x-5+2\cdot\sqrt{2x-5}\cdot3+9}-\sqrt{2x-5-2\cdot\sqrt{2x-5}\cdot3+9}\)
\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}-\sqrt{\left(\sqrt{2x-5}-3\right)^2}\)
\(=\sqrt{2x-5}+3-\left|\sqrt{2x-5}-3\right|\)
b) \(\sqrt{a+6+6\sqrt{a-3}}+\sqrt{a+6-6\sqrt{a-3}}\)
\(=\sqrt{a-3+2\cdot\sqrt{a-3}\cdot3+9}+\sqrt{a-3-2\cdot\sqrt{a-3}\cdot3+9}\)
\(=\sqrt{\left(\sqrt{a-3}+3\right)^2}+\sqrt{\left(\sqrt{a-3}-3\right)^2}\)
\(=\sqrt{a-3}+3+\left|\sqrt{a-3}-3\right|\)
a) + ĐK : \(x\ge\frac{5}{2}\)
\(A=\sqrt{2x-5+6\sqrt{2x-5}+9}-\sqrt{2x-5-2\sqrt{2x-5}+1}\)
\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}-\sqrt{\left(\sqrt{2x-5}-1\right)^2}\)
\(=\sqrt{2x-5}+3-\left|\sqrt{2x-5}-1\right|\)
+ TH1: \(x\ge3\) ta có :
\(A=\sqrt{2x-5}+3-\sqrt{2x-5}+1=4\)
+ TH2 : \(\frac{5}{2}\le x< 3\) ta có :
\(A=\sqrt{2x-5}+3+\sqrt{2x-5}-1\)
\(=2\sqrt{2x-5}+2\)
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5-6\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-5}-3+\sqrt{2x-5}+1=4\\\sqrt{2x-5}-3+\sqrt{2x-5}+1=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{2x-5}-2=4\\2\sqrt{2x-5}-2=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{2x-5}=6\\2\sqrt{2x-5}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-5}=3\\\sqrt{2x-5}=-1\left(L\right)\end{cases}}\)
\(\Leftrightarrow2x-5=9\)
\(\Leftrightarrow x=7\)
điều kiện 2x-5+3 >=0 và 2x-5-1>=0
<=>x>=1 và x>=3
=> x>=1
từ pt đã cho ta có
căn 2x-5+6(2x-5)+9 + căn 2x-5-2(2x-5)+1 = 4
<=>(2x-5+3)+(2x-5-1)=4
<=>4x-8=4
<=> 4x=12
<=>x=3(TMDKXD)
vậy x=3
\(ĐKXĐ:x\ge\frac{5}{2}\)
Ta có: \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)(1)
Có : \(VT\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{2x-5}+3\ge0\\1-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow-3\le\sqrt{2x-5}\le1}\)
\(\Leftrightarrow0\le2x-5\le1\)
\(\Leftrightarrow5\le2x\le6\)
\(\Leftrightarrow\frac{5}{2}\le x\le3\)
KẾt hợp với ĐKXĐ được \(\frac{5}{2}\le x\le3\)
Vậy pt có nghiệm nằm trong khoảng \(\frac{5}{2}\le x\le3\)
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
⇔ \(\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
⇔ \(\text{ |}\sqrt{2x-5}+3\text{ |}+\text{ |}\sqrt{2x-5}-1\text{ |}=4\)
⇔ \(\sqrt{2x-5}+3+\text{ |}\sqrt{2x-5}-1\text{ |}=4\) ( x ≥ \(\dfrac{5}{2}\) ) ( 1)
+) Với : \(\sqrt{2x-5}\text{≥}1\) ⇔ x ≥ 3 , ta có :
\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
\(\text{⇔}2\sqrt{2x-5}=2\)
\(\text{⇔}x=3\left(TM\right)\)
+) Với : \(\sqrt{2x-5}< 1\) ⇔ x < 3 , ta có :
\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)
\(\text{⇔}4=4\) ( luôn đúng với : \(3>x\text{≥}\dfrac{5}{2}\) )
KL...............