Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)
Xét các trường hợp :
1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)
2. Nếu \(x>2\) thì
\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
Gộp hai trường hợp có đpcm.
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
\(\left(\frac{2x+1}{\sqrt{x}^3-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\frac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\)
\(=\left(\frac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\)
\(=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{1}{\sqrt{x}-1}.\left(1-\sqrt{x}+x\right)-\sqrt{x}\)
\(=\frac{1-\sqrt{x}+x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1-\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}-1}=\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{x-1}\)
1)
a) Ta có : \(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{\left(x^2+4\right)+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\). Đến đây áp dụng bđt \(a+\frac{1}{a}>2\)là ra nhé :)
b) Ta sẽ chứng minh bằng biến đổi tương đương :
\(\sqrt{\left(a+c\right)\left(b+d\right)}\ge\sqrt{ab}+\sqrt{cd}\)
\(\Leftrightarrow\left(a+c\right)\left(b+d\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow ab+ad+bc+cd\ge ab+cd+2\sqrt{abcd}\)
\(\Leftrightarrow ad-2\sqrt{abcd}+bc\ge0\)
\(\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)(luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
2) Mình làm tóm tắt thôi nhé , do đề dài...
a) \(\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}}\)
\(=\frac{\sqrt{\left(4x-1\right)+2\sqrt{4x-1}+1}+\sqrt{\left(4x-1\right)-2\sqrt{4x-1}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}}{\sqrt{2}}=\frac{\left|\sqrt{4x-1}-1\right|+\left|\sqrt{4x-1}+1\right|}{\sqrt{2}}\)
b) \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)
c) Biến đổi : \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}-1\right|\)
d) Biến đổi tương tự c)
e) \(\sqrt{x+\sqrt{x^2-4}}.\sqrt{x-\sqrt{x^2-4}}=\sqrt{x^2-\left(x^2-4\right)}=\sqrt{4}=2\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
Có \(a+1+1\ge3\sqrt[3]{a}\)
\(b+1+1\ge3\sqrt[3]{b}\)
\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)
"=" tại a=b=1
ĐK \(x\ge-\frac{1}{2}\)
Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:
\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)
Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:
\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:
\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)
Vậy...
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+2xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Rightarrow1\ge4xy\Leftrightarrow xy\le\frac{1}{4}\)(1)
\(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge2\Leftrightarrow x+y\ge\sqrt{2}\)
Từ phần a ta có \(x+y\le\sqrt{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2\)
\(\le\left(1+1\right)\left(2\left(x+y\right)+2\right)\)
\(=2\cdot\left(2\left(x+y\right)+2\right)\le2\cdot\left(2\sqrt{2}+2\right)\)
\(=4\sqrt{2}+4=VP^2\)
Suy ra \(VT\ge VP\) (ĐPCM)
\(\sqrt{2x-1}\le2\)
ĐK \(2x-1\ge0\)
\(x\ge\frac{1}{2}\)
\(\sqrt{2x-1}\le2\)
\(2x-1\le2^2\)
\(2x-1\le4\)
\(2x\le5\)
\(x\le\frac{5}{2}\)
\(\sqrt{2x-1}\le2\)ĐK : \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
\(\Leftrightarrow2x-1\le2\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)
Kết hợp với đk vậy \(\frac{1}{2}\le x\le\frac{3}{2}\)