\(\sqrt{2\sqrt{3\sqrt{4\sqrt{....\sqrt{2018\sqrt{2019}}}}}}< 3\)

giúp vs :((

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

15 tháng 6 2018

Với mọi \(n\inℕ^∗\) ta có:

 \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n-1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Áp dụng đẳng thức trên ta có:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

15 tháng 6 2018

   \(t\text{ổng}qu\text{át}:\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{n^2\left(n-1\right)-\left(n-1\right)^2n}\)

\(=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{\left(n-1\right)n}\)

\(=\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\)

Thay vào A có

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

\(=1-\frac{1}{\sqrt{2017}}\)

22 tháng 10 2019

a, \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\)-\(\frac{3\left(1+\sqrt{3}\right)}{1+\sqrt{3}}\)

=\(\sqrt{2}-3\)

b,X=\(\sqrt{2019}+\sqrt{2018}\)

(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2019}+\sqrt{2018}\))

Y=\(\sqrt{2018}+\sqrt{2017}\)

(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2018}+\sqrt{2017}\))

So sánh:X & Y<=>X-\(\sqrt{2018}\)&Y-\(\sqrt{2018}\)(Trừ hai vế cho \(\sqrt{2018}\)) <=>\(\sqrt{2019}\)&\(\sqrt{2017}\)

Có:2019>2017

=>\(\sqrt{2019}>\sqrt{2017}\)

=>X>Y

Câu b, mk ko bt có lm đúng ko?

1 tháng 8 2019

a,

\(\sqrt{\sqrt{2019}+\sqrt{2018}}\cdot\sqrt{\sqrt{2019}-\sqrt{2018}}\\ =\sqrt{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}\\ =\sqrt{\left(\sqrt{2019}\right)^2-\left(\sqrt{2018}\right)^2}\\ =\sqrt{2019-2018}=\sqrt{1}=1\)

b, Gọi BT cần tìm là A

Ta có:

\(A^2=4+\sqrt{15}+4-\sqrt{15}-2\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\\ =8-2\sqrt{4^2-\left(\sqrt{15}\right)^2}\\ =8-2\sqrt{16-15}=8-2\cdot1=8-2=6\)

Suy ra \(A=\sqrt{6}\).

Chúc bạn học tốt nhaok.

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

20 tháng 6 2018

a) \(3\sqrt{8}-4\sqrt{18}+5\sqrt{32}-\sqrt{50}=3\sqrt{4.2}-4\sqrt{9.2}+5\sqrt{16.2}-\sqrt{25.2}=6\sqrt{2}-12\sqrt{2}+20\sqrt{2}-5\sqrt{2}=9\sqrt{2}\)b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):10=\left(15\sqrt{50}+5\sqrt{50.4}-3\sqrt{50.9}\right):10=\left(15\sqrt{50}+10\sqrt{50}-9\sqrt{50}\right):10=\dfrac{16\sqrt{50}}{10}=\dfrac{16\sqrt{25.2}}{10}=\dfrac{80\sqrt{2}}{10}=8\sqrt{2}\) c) \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}=2\sqrt{7.4}+2\sqrt{7.9}-3\sqrt{7.25}+\sqrt{7.16}=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}=-\sqrt{7}\)

d)
\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}=14-2.3\sqrt{2.14}+18+6\sqrt{28}=32-6\sqrt{28}+6\sqrt{28}=32\)