Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
\(A< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)
\(=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}=5\)
Vậy A < 5
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
Tìm x biết:
\(\sqrt{3x^2+16}+\sqrt{4x^2+1}+\sqrt{6x^2+9}=8-x^{2016}\)
(\(\sqrt{ }\)là dấu căn bậc hai)
a)\(\frac{21}{\sqrt{14}}\)=\(\frac{21.\sqrt{14}}{14}\)=\(\frac{3\sqrt{14}}{2}\)
b)\(\frac{3}{\sqrt{2}}+\frac{\sqrt{2}}{3}=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{3}=\frac{9\sqrt{2}}{6}+\frac{2\sqrt{2}}{6}=\frac{11\sqrt{2}}{6}\)
c)=\(-46\sqrt{5}\)