\(\sqrt{281108+291108\sqrt{1+x}}=1+\sqrt{281108-291108\sqrt{1+x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{281108+291108\sqrt{1+x}}=1+\sqrt{281108-291108\sqrt{1+x}}\)

\(\Leftrightarrow\sqrt{281108+291108\sqrt{1+x}}-\sqrt{281108-291108\sqrt{1+x}}=1\)

\(\Leftrightarrow\left(\sqrt{281108+291108\sqrt{1+x}}-\sqrt{281108-291108\sqrt{1+x}}\right)^2=1\)

\(\Leftrightarrow281108+291108\sqrt{1+x}+281108-291108\sqrt{1+x}-2\sqrt{\left(281108+291108\sqrt{1+x}\right)\left(281108-291108\sqrt{1+x}\right)}=1\)

\(\Leftrightarrow562216-2\sqrt{\left(281108+291108\sqrt{1+x}\right)\left(281108-291108\sqrt{1+x}\right)}=1\)

\(\Leftrightarrow562215-2\sqrt{\left(281108+291108\sqrt{1+x}\right)\left(281108-291108\sqrt{1+x}\right)}=0\)

P/s : Đến đây tự giải nha số to quá

11 tháng 10 2017

666666

66666666666

6

6

6

6

6

6

6

10 tháng 10 2017

Xem lại đề nhé

10 tháng 10 2017

\(\sqrt{281108+291108\sqrt{1+x}}-\sqrt{281108+291108\sqrt{1+x}}=1\)=1

điều này vô lí

vì hiệu cùa hai số bằng nhau phải bằng 0

=> phương trình vô nghiệm

Giải các phương trình sau: 1. a. \(\sqrt{x+3}-\sqrt{x-4}=1\) b. \(\sqrt{10-x}+\sqrt{x+3}=5\) c. \(\sqrt{15-x}+\sqrt{3-x}=6\) d. \(\sqrt{x-1}+\sqrt{x+1}=2\) e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\) f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\) g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\) i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\) k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\) l....
Đọc tiếp

Giải các phương trình sau:

1.

a. \(\sqrt{x+3}-\sqrt{x-4}=1\)

b. \(\sqrt{10-x}+\sqrt{x+3}=5\)

c. \(\sqrt{15-x}+\sqrt{3-x}=6\)

d. \(\sqrt{x-1}+\sqrt{x+1}=2\)

e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)

f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)

i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)

n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)

o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)

t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)

u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)

y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)

z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)

2.

a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)

c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)

e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)

f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)

k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)

o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)

p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

Làm nhanh giúp mk nhé mn ơi

5
19 tháng 11 2018

Giải pt :

1

a. ĐKXĐ : \(x\ge4\)

Ta có :

\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)

\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)

\(\Leftrightarrow x=13\) (TM ĐKXĐ)

Vậy \(S=\left\{13\right\}\)

b.ĐKXĐ : \(-3\le x\le10\)

Ta có :

\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 11 2018

Câu c,d làm giống câu b

Câu e làm giống câu a

NV
20 tháng 9 2020

b/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|=2\)

Ta có:

\(\left|\sqrt{2x+1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x+1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(\sqrt{2x+1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\)

\(\Leftrightarrow\sqrt{2x-1}\le1\)

\(\Leftrightarrow x\le1\)

Vậy nghiệm của pt là \(\frac{1}{2}\le x\le1\)

NV
20 tháng 9 2020

c/ ĐKXĐ: \(x\ge\frac{3}{2}\)

\(\sqrt{6x+6\sqrt{6x-9}}+\sqrt{6x-6\sqrt{6x-9}}=6\)

\(\Leftrightarrow\sqrt{\left(\sqrt{6x-9}+3\right)^2}+\sqrt{\left(\sqrt{6x-9}-3\right)^2}=6\)

\(\Leftrightarrow\left|\sqrt{6x-9}+3\right|+\left|3-\sqrt{6x-9}\right|=6\)

Ta có:

\(\left|\sqrt{6x-9}+3\right|+\left|3-\sqrt{6x-9}\right|\ge\left|\sqrt{6x-9}+3+3-\sqrt{6x-9}\right|=6\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(\sqrt{6x-9}+3\right)\left(3-\sqrt{6x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{6x-9}\le3\Rightarrow x\le3\)

Vậy nghiệm của pt là \(\frac{3}{2}\le x\le3\)

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

6 tháng 7 2019

\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)

\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)

\(\Rightarrow x-1-\sqrt{x-1}=1\)

\(\Rightarrow\sqrt{x-1}=x-1+1\)

\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )

6 tháng 7 2019

\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)

\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)

\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)

\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)

\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)

d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra

19 tháng 7 2017

\(\sqrt{28-6\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=3\sqrt{3}-1\)

\(\sqrt{6-\sqrt{20}}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-1\)

\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)

\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)

\(=\sqrt{x+2}+\sqrt{x+1}\)

\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)

\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)

\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)

\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)

\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)

\(=6\sqrt{2}\)

19 tháng 7 2017

\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)

\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)