\(\sqrt{28+10\sqrt{3}}\)=??

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

1231+23456=

17 tháng 10 2020

\(\sqrt{28+10\sqrt{3}}\)=\(\sqrt{\left(\sqrt{3}\right)^2+2.5.\sqrt{3}+\left(\sqrt{25}\right)^2}\)

                                  =\(\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{25}.\sqrt{3}+\left(\sqrt{25}\right)^2}\)

                                  =\(\sqrt{\left(\sqrt{3}+\sqrt{25}\right)^2}\)

                                  =\(\sqrt{\left(\sqrt{3}+5\right)^2}\)

                                  =\(|\sqrt{3}+5|\)

                                  =\(\sqrt{3}+5\)(vì \(\sqrt{3}+5\)\(\ge0\))

12 tháng 8 2020

1)

BT = \(\sqrt{\left(5+\sqrt{3}\right)^2}-\sqrt{\left(5-\sqrt{3}\right)^2}\)

= \(\left(5+\sqrt{3}\right)-\left(5-\sqrt{3}\right)\)

= \(2\sqrt{3}\)

2:

BT = \(\frac{\sqrt{2}.\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\frac{5\left(\sqrt{6}-1\right)}{\left(1+\sqrt{6}\right)\left(\sqrt{6}-1\right)}\)

= \(\sqrt{6}-\frac{5\left(\sqrt{6}-1\right)}{5}\) = \(\sqrt{6}-\left(\sqrt{6}-1\right)\) =1

9 tháng 7 2019

\(\sqrt{3-2\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\left(vì:\sqrt{2}>\sqrt{1}=1\right)\)

\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}=\sqrt{\left(2\right)^2+2.2\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\left(2+\sqrt{3}>0\right)\)

\(\sqrt{28-10\sqrt{3}}=\sqrt{25-10\sqrt{3}+3}=\sqrt{5^2-2.5\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\left(vì:5=\sqrt{25}>\sqrt{3}\right)\)

9 tháng 7 2019

Bạn giải thích cho mik chỗ \(\sqrt{\left(\sqrt{2}-1\right)^2}\)tại sao lại bằng Căn bậc 2 của 2 -1

5 tháng 6 2018

mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự

1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)

\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)

2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)

b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)

28 tháng 6 2017

18-6\(\sqrt{10}\)1=8-360=-342

19+8\(\sqrt{3}\)=19+192=211

27+10\(\sqrt{2}\)=27+200=227

28+12\(\sqrt{2}\)=28+288=316

7 tháng 6 2019

\(\sqrt{11+6\sqrt{2}}-\sqrt{2}\text{=}\sqrt{9+6\sqrt{2}+4}-\sqrt{2}\)

=\(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{2}\text{=}3+\sqrt{2}-\sqrt{2}=3\)

7 tháng 6 2019

a/ \(\sqrt{11+6\sqrt{2}}-\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{2}=3+\sqrt{2}-\sqrt{2}=3\)

b/ \(\sqrt{28-10\sqrt{3}}+5=\sqrt{25-10\sqrt{3}+3}+5\)

\(=\sqrt{\left(5-\sqrt{3}\right)^2}+5=5-\sqrt{3}+5=25-\sqrt{3}\)

c/ \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1=2\)

d/ \(3\sqrt{5}-\sqrt{6-2\sqrt{5}}=3\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)\

\(=3\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=3\sqrt{5}-\sqrt{5}+1=2\sqrt{5}+1\)

27 tháng 7 2020

a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)

b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)

\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)

d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)

Bài 1: Rút gọn

a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}\)

\(=2-\sqrt{2}-\sqrt{6}\)

b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)

\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{5}\)

c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-\sqrt{392}+7+\sqrt{392}\)

=21

d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)

\(=16\sqrt{5}\)

17 tháng 7 2019

\(\left(\frac{15}{3-\sqrt{3}}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)

\(=\left(\frac{15}{3-\sqrt{3}}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{3}+5\)

\(=\left(\frac{5\sqrt{3}}{\sqrt{3}-1}-\frac{2}{1-\sqrt{3}}+\frac{3}{\sqrt{3}-2}\right):\sqrt{3}+5\)

\(=-\frac{5\sqrt{3}-8}{5-3\sqrt{3}}:\sqrt{3}+5\)

\(=-\frac{5\sqrt{3}-8}{\left(5-3\sqrt{3}\right)\left(5+3\sqrt{3}\right)}\)

\(=-\frac{5\sqrt{3}-8}{16-10\sqrt{3}}\)

= -(-1/2) = 1/2