\(\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

\(\sqrt{28-6\sqrt{3}}\) ms đúng đề chứ bạn

21 tháng 12 2018

\(\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|4-2\sqrt{3}\right|+\left|2\sqrt{3}-1\right|\)

\(=4-2\sqrt{3}+2\sqrt{3}-1=3\)

5 tháng 12 2017

Bài 2:

\(B=\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|4-2\sqrt{3}\right|+\left|2\sqrt{3}-1\right|\)

\(=4-2\sqrt{3}+2\sqrt{3}-1\)

\(=3\)

\(C=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{2}.\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=5-3=2\)

\(D=\sqrt{4+2\sqrt{3}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{3}+1-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1=2\)

5 tháng 12 2017

1) \(\Leftrightarrow x^2-7x+8+\sqrt{x^2-7x+8}-20=0\)

Đặt \(t=\sqrt{x^2-7x+8}\ge0\)

Phương trình tương đương

\(t^2+t-20=0\)

\(\left[{}\begin{matrix}t=4\left(TM\right)\\t=-5\left(KTM\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-7x+8}=4\)

Bạn đọc tự giải quyết tiếp bài toán.

NV
5 tháng 6 2019

\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)

\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)

\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)

\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)

\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

18 tháng 6 2017

2.

A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)

\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1-\sqrt{3}-1\)

\(=-2\)

B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)

\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)

\(=\sqrt{5-2\sqrt{2}-2}\)

\(=\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)

\(=\sqrt{2}-1\)

2 tháng 9 2017

b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)

= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)

= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)

= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)

\(\)\(-2,449\)

2 tháng 9 2017

\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)

= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)

= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

\(2,098\)

13 tháng 7 2018

\(a.\sqrt{14+4\sqrt{3}.\sqrt{2}}=\sqrt{12+2.2\sqrt{3}.\sqrt{2}+2}=2\sqrt{3}+\sqrt{2}\)

\(b.\sqrt{11-4\sqrt{3}.\sqrt{2}}=\sqrt{8-2.2\sqrt{2}.\sqrt{3}+3}=2\sqrt{2}-\sqrt{3}\)

\(c.\sqrt{28+16\sqrt{3}}=\sqrt{16+2.2\sqrt{3}.4+12}=4+2\sqrt{3}\)

\(d.\sqrt{11+4\sqrt{7}}=\sqrt{7+2.2\sqrt{7}+4}=\sqrt{7}+2\)

\(e.\sqrt{29-4\sqrt{7}}=\sqrt{28-2.2\sqrt{7}+1}=2\sqrt{7}-1\)

\(f.\sqrt{21+6\sqrt{2}.\sqrt{3}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}\)

19 tháng 6 2018

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

19 tháng 6 2018

b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)