Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=50\)
Vậy x = 50
b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3}=\left(2+3\right)\sqrt{3}\)
\(\Leftrightarrow x+1=5\)
\(\Leftrightarrow x=4\)
Vậy x = 4
\(\sqrt{9\left(x-1\right)}=21\\9\left(x-1\right)=21^2\\x-1=49\\ x=48 \)\(\sqrt{3}x+\sqrt{3}=2\sqrt{3}+3\sqrt{3}\\ 0=\sqrt{3}\left(2+3-1-x\right)\\ 0=\sqrt{3}\left(4-x\right)\\ x=4\\ \)
\(A=2\sqrt{5}-\sqrt{45}+2\sqrt{20}=2\sqrt{5}-\sqrt{3^2.5}+2\sqrt{2^2.5}=2\sqrt{5}-3\sqrt{5}+4\sqrt{5}=3\sqrt{5}\)
\(B=\left(\sqrt{18}-\frac{1}{2}\cdot\sqrt{32}+12\sqrt{2}\right):\sqrt{2}=\left(3\sqrt{2}-\frac{1}{2}\cdot4\sqrt{2}+12\sqrt{2}\right):\sqrt{2}\)
\(=13\sqrt{2}:\sqrt{2}=13\)
\(C=\left(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\right)\cdot\sqrt{3}=\left(2\sqrt{3}+6\sqrt{3}-3\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)
\(D=\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)
Điều kiện: \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
\(3\sqrt{2x-3}+2\sqrt{8x-12}=\sqrt{18x-27}+9\)
\(3\sqrt{2x-3}+2\sqrt{4\left(2x-3\right)}-\sqrt{9\left(2x-3\right)}=9\)
\(3\sqrt{2x-3}+4\sqrt{2x-3}-3\sqrt{2x-3}=9\)
\(4\sqrt{2x-3}=9\)
\(x\ge\dfrac{3}{2}\)\(\Rightarrow16\left(2x-3\right)=81\)
\(2x-3=\dfrac{81}{16}\Leftrightarrow x=\dfrac{\dfrac{81}{16}+3}{2}=\dfrac{129}{32}\)
a) \(\sqrt{x-3}=2\)
\(\Leftrightarrow\) \(x-3=4\)
\(\Leftrightarrow\) \(x=7\)
b) \(\sqrt{x^2-6x+9}=5\) (ĐKXĐ: \(x\ne0\) , \(x\ge3\) )
\(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=5\)
\(\Leftrightarrow\) \(\left|x-3\right|=5\)
\(\Leftrightarrow\) \(x-3=5\) với x > 0
\(x-3=-5\) với x < 0
\(\Leftrightarrow\) \(x=8\) (thỏa mãn)
\(x=-2\) (loại) | NOTE: cũng có thể ghi là không thỏa mãn)
c) \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\) (ĐKXĐ: \(x\ne0\) )
\(\Leftrightarrow\) \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
\(\Leftrightarrow\) \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\) | Có lẽ không nên làm theo cách này vì nó khá dài dòng|
\(\Leftrightarrow\) \(2x\left(\sqrt{3}+\sqrt{2}\right)-3\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(\left(2x-3\right)\left(\sqrt{3}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(2x-3=0\) hoặc \(\sqrt{3}+\sqrt{2}=0\) (luôn đúng)
\(\Leftrightarrow\) \(2x=3\)
\(\Leftrightarrow\) \(x=\dfrac{3}{2}\) (thỏa mãn)
\(\sqrt{x-3}=2\\ \Rightarrow x-3=4\\ \Rightarrow x=7\)
\(\sqrt{x^2-6x+9}=5\\ \Rightarrow\sqrt{\left(x-3\right)^2}=5\\ \Rightarrow x-3=5\\ \Rightarrow x=8\)
\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\\ \Rightarrow2\sqrt{3}x+3\sqrt{2}=2\sqrt{2}x+3\sqrt{3}\\ \Rightarrow2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\\ \Rightarrow2x=3\\ \Rightarrow x=\dfrac{3}{2}\)
a, \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow\sqrt{2}x-5\sqrt{2}=0\Leftrightarrow\sqrt{2}\left(x-5\right)=0\Leftrightarrow x=5\)
b, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}\left(x+1\right)=5\sqrt{3}\Leftrightarrow x+1=5\Leftrightarrow x=4\)
c, \(\sqrt{3}x^2-\sqrt{12}=0\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{1}{\sqrt{5}}\left(x^2-10\right)=0\Leftrightarrow x^2-10=0\Leftrightarrow x=\pm\sqrt{10}\)
f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)
mik sửa lại câu f , tí nhé :
f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
1) \(\sqrt{x^2-2x+2}\) = x - 2
⇔ x2 - 2x + 2 = x2 - 4x + 4
⇔ x2 - 2x + 2 - x2 + 4x - 4 = 0
⇔ 2x - 2 = 0
⇔ 2x = 2
⇔ x = 1
2) \(\sqrt{2x-3}\) + 3 = x
⇔ \(\sqrt{2x-3}\) = x - 3
⇔ 2x - 3 = x2 - 6x + 9
⇔x2 - 6x + 9 - 2x + 3 = 0
⇔ x2 - 8x + 12 = 0
x1 = 6 (nhận)
x2 = 2 (nhận)
Vậy: S = {6;2}
3)\(\sqrt{x^2-2x+4}\) + x - 5 = 0
⇔ \(\sqrt{x^2-2x+4}\) = 5 - x
⇔ x2 - 2x + 4 = 25 - 10x + x2
⇔ x2 - 2x + 4 - 25 + 10x - x2 = 0
⇔ 8x - 21 = 0
⇔ 8x = 21
⇔ x = \(\frac{21}{8}\)
a) \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=\left(2+6+15-36\right)\sqrt{3}=-13\sqrt{3}\)
b) \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=6\left(3+8-5\right)=36\)
a)\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=\sqrt{4\cdot3}+2\sqrt{9\cdot3}+3\sqrt{25\cdot3}-9\sqrt{16\cdot3}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
b)\(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)
\(=2\sqrt{3}\left(\sqrt{9\cdot3}+2\sqrt{16\cdot3}-\sqrt{25\cdot3}\right)\)
\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(2\sqrt{3}\cdot6\sqrt{3}=12\cdot3=36\)
b)\(\frac{\sqrt{27}}{\sqrt{12}}+\frac{1}{2}\)
\(=\frac{\sqrt{3}.\sqrt{9}}{\sqrt{3}.\sqrt{4}}+\frac{1}{2}\)
\(=\frac{\sqrt{9}}{\sqrt{4}}+\frac{1}{2}\)
\(=\frac{3}{2}+\frac{1}{2}\)
\(\frac{4}{2}=2\)
a) \(\sqrt{45}.\sqrt{15}.\sqrt{27}\)
\(=\left(\sqrt{15}\right)^2.\left(\sqrt{3}\right)^2.\sqrt{9}\)
\(=15.3.3\)
\(=135\)
kq là 29