Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Không giải được\(\sqrt{29}-6\sqrt{6}< 0\)
b. \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
a) Không thể giải vì \(\sqrt{29}-6\sqrt{6}< 0\)
b) \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(\left(-\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\)
=\(-2-2\sqrt{5}-2\sqrt{5}\)
=\(-2-4\sqrt{5}\)
=\(-2\left(1+2\sqrt{5}\right)\)
a) \(2^2=4\)
\(\sqrt{3^2}=3\)
\(4>3\Rightarrow\) \(2>\sqrt{3}\)
b) \(6^2=36\)
\(\sqrt{41^2}=41\)
\(36< 41\Rightarrow6< \sqrt{41}\)
\(\frac{2\sqrt{2}\left(1+\sqrt{3}\right)}{\frac{3\left(1+\sqrt{3}\right)}{\sqrt{2}}}=\frac{2\sqrt{2}\sqrt{2}\left(1+\sqrt{3}\right)}{3\left(1+\sqrt{3}\right)}=\frac{4}{3}\)
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
\(B=\sqrt{\sqrt{6}+\sqrt{3+2\sqrt{2}}}\cdot\sqrt{3+\sqrt{2}}\cdot\sqrt{\sqrt{6}-\sqrt{3+2\sqrt{2}}}=\sqrt{6-\left(3+2\sqrt{2}\right)}\cdot\sqrt{3+\sqrt{2}}=\sqrt{3-2\sqrt{2}}\cdot\sqrt{3+\sqrt{2}}=\left(\sqrt{2}-1\right)\sqrt{3+\sqrt{2}}\)
\(C=\left(\sqrt{6}-\sqrt{2}\right)\left(10+5\sqrt{3}\right)\sqrt{2-\sqrt{3}}=\sqrt{2}\left(\sqrt{3}-1\right)\cdot5\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}=\sqrt{2}\left(\sqrt{3}-1\right)\cdot5\sqrt{2+\sqrt{3}}\cdot\sqrt{4-3}=5\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}=5\left(3-1\right)=10\)
a,\(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right).\)
c,\(\sqrt{a}-a^2=\sqrt{a}.\left(1-a\sqrt{a}\right)\)
d,\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
BÀI 1:
a)
PT <=> \(3x-2=7-4\sqrt{3}\)
<=> \(3x=9-4\sqrt{3}\)
<=> \(x=3-\frac{4}{\sqrt{3}}\)
b)
pt => \(x+1=14-6\sqrt{5}\)
<=> \(x=13-6\sqrt{5}\)
BÀI 2:
a)
pt <=> \(\sqrt{x^2-9}=3\sqrt{x-3}\)
<=> \(x^2-9=9\left(x-3\right)\)
<=> \(x^2-9=9x-27\)
<=> \(x^2-9x+18=0\)
<=> \(\orbr{\begin{cases}x=6\\x=3\end{cases}}\)
\(\sqrt[2]{5+6}=\sqrt{11}\)
bằng: 3.31662479