\(\sqrt{2028-x}+\sqrt{2093-x}+\sqrt{2268-x}=29\)

giúp t với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

 Đk: x \(\le\)2028

Ta có: \(\sqrt{2028-x}+\sqrt{2093-x}+\sqrt{2268-x}=29\)

<=> \(\sqrt{2028-x}-4+\sqrt{2093-x}-9+\sqrt{2268-x}-16=0\)

<=> \(\frac{2028-x-16}{\sqrt{2028-x}+4}+\frac{2093-x-81}{\sqrt{2093-x}+9}+\frac{2268-x-256}{\sqrt{2268-x}+16}=0\)

<=> \(\left(2012-x\right).\left(\frac{1}{\sqrt{2028-x}+4}+\frac{1}{\sqrt{2093-x}+9}+\frac{1}{\sqrt{2268-x}+16}\right)=0\)

<=> x = 2012 (tm)

26 tháng 2 2020

\(\sqrt{2020-x}+\sqrt{2023-x}+\sqrt{2028-x}=6\)\(\left(x\le2020\right)\)

\(\Leftrightarrow\sqrt{2020-x}-1+\sqrt{2023-x}-2+\sqrt{2020-x}-3=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2020-x}-1\right)\left(\sqrt{2020-x}+1\right)}{\sqrt{2020-x}+1}\) \(+\frac{\left(\sqrt{2023-x}-2\right)\left(\sqrt{2023-x}+2\right)}{\sqrt{2023-x}+2}\)\(+\frac{\left(\sqrt{2028-x}-3\right)\left(\sqrt{2028-x}+3\right)}{\left(\sqrt{2028-x}+3\right)}\)=0

\(\Leftrightarrow\frac{2019-x}{\sqrt{2020-x}+1}+\frac{2019-x}{\sqrt{2023-x}+2}+\frac{2019-x}{\left(\sqrt{2028-x}+3\right)}\)=0

\(\Leftrightarrow\left(2019-x\right)\left(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=2019\left(tm\right)\\\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}=0\left(2\right)\end{matrix}\right.\)

vì \(\sqrt{2020-x}\ge0\Rightarrow\frac{1}{\sqrt{2020-x}+1}>0\)

cmtt: \(\frac{1}{\sqrt[]{2023-x}+2}>0\)

\(\frac{1}{\sqrt{2028-x}+3}>0\)

=>\(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}>0\)(3)

từ (2) và (3)=> vô lý

vậy x=2019 là nghiệm của phương trình

14 tháng 4 2019

1, \(B=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\frac{x+\sqrt{x}}{x-4}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{x-4}{x+\sqrt{x}}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{x\left(\sqrt{x}+1\right)}\)

2, B=|B|\(\Rightarrow\frac{x+\sqrt{x}}{x-4}\ge0\)

* Với x-4>0\(\Rightarrow x>4\)

\(\Rightarrow x+\sqrt{x}\ge0\)

\(\Rightarrow x>0\) \(\Rightarrow x>4\)

*Với x-4<0=> x<4

\(\Rightarrow x+\sqrt{x}\le0\)

\(\Rightarrow-1\le x\le0\left(KTM\right)\)

Vậy x>4.

3,\(P.x=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)}\)\(\le10\sqrt{x}-29-\sqrt{x-25}\)

\(\Rightarrow\left(x-4\right)\left(\sqrt{x}+2\right)\le\left(\sqrt{x}+1\right)\left(10\sqrt{x}-29-\sqrt{x-25}\right)\)

Đến đây tự giải.

14 tháng 4 2019

Lúc đầu rút gọn B phải là \(\frac{\sqrt{x}}{\sqrt{x}-2}\)chứ c

18 tháng 8 2018

Bài 1 : \(\left\{{}\begin{matrix}\sqrt{10}\approx3,16\\\sqrt{29}\approx5,39\\\sqrt{107}\approx10,34\\\sqrt{19,7}\approx4,44\end{matrix}\right.\)

Bài 2 : \(\left\{{}\begin{matrix}\sqrt{x}< 3\Leftrightarrow x< 9\Leftrightarrow0\le x< 9\\2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\end{matrix}\right.\)

13 tháng 7 2018

\(ĐKXĐ:x\ge0,x\ne1\)

\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)

\(K=\left[\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x+2\sqrt{x}-\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\right]\)

\(K=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

Ta có: \(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=24+\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=24+\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=24+\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{5}+1}=24+1=25\)

Thay \(x=25\) vào \(K\) ta được:

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{\sqrt{25}+1}{2.\sqrt{25}}=\dfrac{6}{10}=\dfrac{3}{5}\)

c.

Ta có: \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\ge1\)

\(\Rightarrow\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}}{8\sqrt{x}+8}-\dfrac{x+2\sqrt{x}+1}{8\sqrt{x}+8}-\dfrac{8\sqrt{x}+8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{6\sqrt{x}-x-9}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{-\left(\sqrt{x}-3\right)^2}{8\sqrt{x}+8}\ge0\)

Ta có: \(\left\{{}\begin{matrix}-\left(\sqrt{x}-3\right)^2\le0\\8\sqrt{x}+8\ge0\end{matrix}\right.\)

⇒ Không có \(x\) thỏa mãn

11 tháng 7 2017

a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\sqrt{x}+3}\)

\(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)

Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)

\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)

1 tháng 9 2019

Cái biểu thức kia tạo thành hằng đẳng thức rùi thế x vào thì kết quả là 5 nha bạn !!!

19 tháng 8 2019

ráng làm nốt rồi đi ngủ thoyy

1.

a) ĐK: \(x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)

Vậy...

b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)

Vậy...

c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

Nhân cả 2 vế với \(\sqrt{2}\) ta được :

\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)

Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)

2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)

Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)

Tương tự 2 trường hợp còn lại ta đều được \(B=0\)

Vậy \(B=0\)

19 tháng 8 2019

yeu

31 tháng 8 2018

+) ta có : \(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

+) ta có : \(B=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1\)

+) điều kiện : \(x\ge1\)

ta có : \(C=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}C=2\sqrt{x-1}\left(x\ge2\right)\\C=2\left(1\le x< 2\right)\end{matrix}\right.\)

câu c này mk sữa đề nhát

2 tháng 9 2018

thanks so much !