\(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

23 tháng 12 2018

Ta có công thức tổng quát

\(\dfrac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)Vậy \(P=\dfrac{1}{\sqrt{2}.1+\sqrt{1}.2}+\dfrac{1}{\sqrt{3}.2+\sqrt{2}.3}+...+\dfrac{1}{\sqrt{100}.99+\sqrt{99}.100}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

2 tháng 9 2018

Với  mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

đến đây bạn áp dụng đẳng thức trên để tính gtbt nhé:  kết quả:  9/10

a: \(=2\cdot3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

b: \(=5\sqrt{10}+2\cdot5-5\sqrt{10}=10\)

c: \(=2\sqrt{7}\cdot\sqrt{7}-\sqrt{12}\cdot\sqrt{7}-\sqrt{7}\cdot\sqrt{7}+2\sqrt{21}=2\cdot7-7=7\)

d: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}=2\cdot11=22\)

2 tháng 7 2018

\(1.A=\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right).\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\left(\dfrac{3+\sqrt{5}}{9-5}-\dfrac{3-\sqrt{5}}{9-5}\right).\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{2\sqrt{5}}{4}.\sqrt{5}=\dfrac{5}{2}\) \(2.B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{100}-1\)

\(3.C=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.2.1+3.\sqrt{2}.1+1}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.2.1+3.\sqrt{2}.1-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\) \(4.Sai-đề\) ???

2 tháng 7 2018

Sorry và cám ơn bạn.

4.\(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\)

21 tháng 8 2016

\(2.3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

\(5\sqrt{10}+2.5-5\sqrt{10}=10\)

\(14-2\sqrt{21}-7+2\sqrt{21}=7\)

\(33-3\sqrt{22}-11+3\sqrt{22}=22\)

25 tháng 8 2020

1) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)

\(=5\sqrt{10}-10-5\sqrt{10}\)

\(=-10\)

2) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=14-2\sqrt{21}-7+2\sqrt{21}\)

\(=7\)

3) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\) (hẳn đề là như thế này)

\(=33-3\sqrt{22}-11+3\sqrt{22}\)

\(=22\)

10 tháng 6 2019

bấm máy tính là ra hết bn akhaha

10 tháng 6 2019

giải giúp mình đi bạn