\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(\sqrt{16+2\sqrt{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

a/ \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(1+2\sqrt{2}\right)^2}\)

\(=3-2\sqrt{2}+1+2\sqrt{2}=4\)

28 tháng 10 2021

b/ \(\sqrt{16+2\sqrt{63}}-\sqrt{16-6\sqrt{7}}\)

\(=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(3-\sqrt{7}\right)^2}\)

\(=3+\sqrt{7}-3+\sqrt{7}=2\sqrt{7}\)

26 tháng 7 2018

Phần lớn bạn nên nhân từng cái nha

26 tháng 7 2018

1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)

2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)

3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)

4 , bạn làm tương tự nhé

5 , bạn làm tương tự nhé

6 , bạn làm tương tự nhé

2 tháng 9 2017

b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)

= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)

= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)

= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)

\(\)\(-2,449\)

2 tháng 9 2017

\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)

= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)

= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

\(2,098\)

24 tháng 8 2019

\(\sqrt{16-6\sqrt{7}}-\sqrt{32+10\sqrt{7}}.\)

\(=\sqrt{9-6\sqrt{7}+7}-\sqrt{25+10\sqrt{7}+7}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\sqrt{7}^2}-\sqrt{5^2+2.5.\sqrt{7}+\sqrt{7^2}}\)

\(\sqrt{\left(3-\sqrt{7}\right)^2}-\sqrt{\left(5+\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-5-\sqrt{7}=-2-2\sqrt{7}\)

24 tháng 8 2019

\(\sqrt{17-4}.\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{13}.\sqrt{5+4\sqrt{5}+4}\)

\(=\sqrt{13}\left(\sqrt{5}+2\right)\)

\(=\sqrt{65}+2\sqrt{13}\)

21 tháng 7 2018

a ) \(\sqrt{3+2\sqrt[]{2}}\) - \(\sqrt{2}\)

= \(\sqrt{\left(1+\sqrt{2}\right)^2}\) -\(\sqrt{2}\)

= 1 + \(\sqrt{2}\) - \(\sqrt{2}\)

=1

b) \(\sqrt{16-6\sqrt{7}}\)-\(2\sqrt{7}\)

= \(\sqrt{\left(3-\sqrt{7}\right)^2}\)-\(2\sqrt{7}\)

= 3 - \(\sqrt{7}\)-\(2\sqrt{7}\)

=3 - 3\(\sqrt{7}\)

c )\(\sqrt{30+12\sqrt{6}}\) +\(\sqrt{30-12\sqrt{6}}\)

= \(\sqrt{6\left(5+2\sqrt{6}\right)}\) + \(\sqrt{6\left(5-2\sqrt{6}\right)}\)

=\(\sqrt{6}\) (\(\sqrt{5+2\sqrt{6}}\) + \(\sqrt{5-2\sqrt{6}}\) )

=\(\sqrt{6}\) [\(\sqrt{\left(1+\sqrt{6}\right)^2}\) +\(\sqrt{\left(1-\sqrt{6}\right)^2}\)

=\(\sqrt{6}\) (1 + \(\sqrt{6}\) + \(\sqrt{6}\) -\(1\))

= 2 . 6

=12

d)\(\sqrt{9-4\sqrt{5}}\) -\(\sqrt{5}\)

=\(\sqrt{\left(2-\sqrt{5}\right)}^2\) -\(\sqrt{5}\)

=\(\sqrt{5}\) -\(2\) -\(\sqrt{5}\)

=2

e ) \(\sqrt{\left(-2\right)^6}\) \(+\) \(\sqrt{\left(-3\right)}^4\)

= \(\left|\left(-2\right)^3\right|\) + \(\left|\left(-3\right)^2\right|\)

=8 + 9

=17

21 tháng 8 2018

a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{1}{2}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=1+\sqrt{2}\)

d) \(\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}\\ =\sqrt{81-17}=\sqrt{64}=8\)

21 tháng 8 2018

\(a.\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(b.\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

\(c.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\dfrac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

\(d.\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}=\sqrt{81-17}=8\)

6 tháng 9 2017

2, \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow-\sqrt{x+1}=-17\)

\(\Leftrightarrow x+1=289\left(x>0\right)\)

\(\Leftrightarrow x=288\)

Vậy x = 288

3, \(-5x+7\sqrt{x}+12=0\)

\(\Leftrightarrow-5x+12\sqrt{x}-5\sqrt{x}+12=0\)

\(\Leftrightarrow\sqrt{x}\left(12-5\sqrt{x}\right)+\left(12-5\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(12-5\sqrt{x}\right)=0\)

Do \(\sqrt{x}+1>0\)

\(\Rightarrow12-5\sqrt{x}=0\Leftrightarrow x=\dfrac{144}{25}\)

Vậy...

6 tháng 9 2017

1. (Đề có chút sai sai nên mình sửa lại nhé) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

(ĐK: \(x\ge1\))

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)

\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)

\(\Leftrightarrow x=65\left(tm\right)\)

Vậy pt đã cho có nghiệm x=65.

2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)

(ĐK: \(x\ge-1\))

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9\left(x+1\right)}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)

\(\Leftrightarrow-\sqrt{x+1}=-17\)

\(\Leftrightarrow\sqrt{x+1}=17\)

\(\Leftrightarrow x+1=289\)

\(\Leftrightarrow x=288\left(tm\right)\)

Vậy \(S=\left\{288\right\}\)

3. \(-5x+7\sqrt{x}+12=0\) (ĐK: \(x\ge0\))

\(\Leftrightarrow5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow5x+5\sqrt{x}-12\sqrt{x}-12=0\)

\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\5\sqrt{x}-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vô.lý\right)\\5\sqrt{x}=12\end{matrix}\right.\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\)

Vậy pt có nghiệm \(x=\dfrac{144}{25}\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán