\(\sqrt{16-2\sqrt{55}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Dễ ẹt : 

\(\sqrt{16-2\sqrt{55}}\)

\(=\sqrt{5-2\sqrt{5}\sqrt{11}+11}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{11}\right)^2}\)

\(=\sqrt{5}-\sqrt{11}\)

21 tháng 7 2018

A. -0,8 ×0,125=-0,1

b. 2^3+3^2=8+9=17

c.=1

d.=-2

15 tháng 7 2018

1) Đk: \(x\ge4\)

\(\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\sqrt{x-3}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}}{\sqrt{x-3}}+\dfrac{x-3}{\sqrt{x-3}}=\dfrac{7}{\sqrt{x-3}}\)

\(\Leftrightarrow\dfrac{\sqrt{x^2-16}+x-10}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2-16}+x-10=0\)

\(\Leftrightarrow\sqrt{x^2-16}=10-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-16=100-20x+x^2\\x\le10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x=116\\x\le10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{29}{5}\left(N\right)\\x\le10\end{matrix}\right.\)

Kl: x= 29/5

2) Đk: \(x\ge-1\)

\(x^2-5x+14=4\sqrt{x+1}\)

\(\Leftrightarrow x^4+25x^2+196-10x^3-140x+28x^2=16x+16\)

\(\Leftrightarrow x^4-10x^3+53x^2-156x+180=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3-7x^2+32x-60\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x^2-4x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-4x+20=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(N\right)\)

Kl: x=3

15 tháng 7 2018

cảm ơn nhìu

9 tháng 6 2016

\(\sqrt{55-6\sqrt{6}}=\sqrt{3\sqrt{6}-2\cdot3\sqrt{6}+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}=3\sqrt{6}-1=3\sqrt{6}+\left(-1\right)\)

\(=>a=-1;b=3\)

\(=>a-b=-1-3=-4\)

11 tháng 6 2018

Học dỏi nha :)) 
~ Good luck ~

11 tháng 6 2018

\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)

\(=\sqrt{\frac{288+2\times12\sqrt{2}+1}{4^2}}+\sqrt{\frac{128+2\sqrt{12}+1}{4^2}}\)

\(=\sqrt{\frac{\left(\sqrt{288}+1\right)^2}{4^2}}+\sqrt{\frac{\left(\sqrt{128}+1\right)^2}{4^2}}\)

\(=\frac{\sqrt{288}+1}{4}+\frac{\sqrt{128}+1}{4}\)

\(=\frac{12\sqrt{2}+8\sqrt{2}+2}{4}\)

\(=\frac{1+10\sqrt{2}}{2}\)

30 tháng 12 2015

Tick đi rồi mk nói cho kq đúng 100%

1 tháng 1 2016

Áp dụng định luật cosi \(\frac{A+B}{2}\)\(\geq\)\(\sqrt{A.B}\) sẽ ra kq là 14