Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)
Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)
\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)
Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)
\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)
SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)
..... giải nốt tiếp ra x=1
c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
ĐK:....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)
\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)
\(=\left(x-8\right)^2+2\ge2\)
Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)
\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)
Cho mình sửa đề xí ạ!
b) \(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)
\(C=\sqrt{6+2\sqrt{3}-2}\)
\(C=\sqrt{4+2\sqrt{3}}\)
\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1\)
\(=2\sqrt{2}\approx2,82843\)
2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)
\(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)
3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)
\(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)
ko có máy tính để tinnhs mà bn biết giải ko
\(\sqrt{14-3\sqrt{10}}\)
\(\sqrt{14-3\sqrt{2.5}}\)
\(\sqrt{14-6\sqrt{5}}\)
\(\sqrt{\left(3\right)^2-6\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(3-\sqrt{5}>0\)
\(\left|3-\sqrt{5}\right|\)
\(3-\sqrt{5}\)