Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)
Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)
\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)
Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)
\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)
SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)
..... giải nốt tiếp ra x=1
c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
ĐK:....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)
\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)
\(=\left(x-8\right)^2+2\ge2\)
Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)
\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)
1. \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+\sqrt{84}\)= -6,423305878
2. \(\sqrt{150}+\sqrt{1,6}\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)= 24,79207036
NHA Vũ Hoàng Thiên An ! ! !
K VÀ KB NHA !
\(\sqrt{3x^2+6x+7}\) +\(\sqrt{5x^2+10x+14}\)=4-2x-\(x^2\)
2x^2+3x+\(\sqrt{2x^2+3x+9}\)=33
MN giúp e vs
Ta có \(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu"=" xảy ra khi x=-1
Tương tự \(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{9}=3\)
Dấu"=" xảy ra khi x=-1
\(\Rightarrow4-2x-x^2\ge5\)
\(\Rightarrow-\left(x+1\right)^2+5\ge5\)
\(\Rightarrow\left(x+1\right)^2\le0\)
mà \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)(tm)
Vậy....................
a) Ta có: \(\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{3}\right|\)
\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))
b) Ta có: \(\sqrt{12-2\sqrt{35}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{5}\right|\)
\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))
c) Ta có: \(\sqrt{16-2\sqrt{55}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{5}\right|\)
\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))
d) Ta có: \(\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|\)
\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))
e) Ta có: \(\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)
\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))
\(\sqrt{9-4\sqrt{5}}\)
=\(\sqrt{5-4\sqrt{5}+4}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}\)
=\(\sqrt{5}-2\)
\(\sqrt{16-2\sqrt{55}}\)
=\(\sqrt{11-2\sqrt{11}.\sqrt{5}+5}\)
=\(\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)
\(C=\sqrt{6+2\sqrt{3}-2}\)
\(C=\sqrt{4+2\sqrt{3}}\)
\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1\)
\(=2\sqrt{2}\approx2,82843\)
2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)
\(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)
3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)
\(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)
\(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+\sqrt{3}\right)^2-2\)
\(=3+2\sqrt{3}+1-2\)
\(=2\sqrt{3}+2\)
\(=2\left(\sqrt{3}+1\right)\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2.\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{3+\sqrt{5}}\right)+\)\(\left(\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2.\left(3-\sqrt{5}\right)+3+\sqrt{5}\)
\(=6+6-2\sqrt{5}\)
\(=12-2\sqrt{5}\)
\(=2\left(6-\sqrt{5}\right)\)
Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)
\(\sqrt{14-2\sqrt{33}}=\sqrt{14-2\sqrt{3.11}}\)
\(=\sqrt{\left(\sqrt{11}\right)^2-2\sqrt{3.11}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{3}\right|=\sqrt{11}-\sqrt{3}\)vì \(\sqrt{11}-\sqrt{3}>0\)