\(\sqrt{13+4\sqrt{10}}\)  giải giúp nhé

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

√13+4√10=√8+2.2√2.√5+5=√(2√2+√5)2=2√2+√5

Cái này á bạn

Hok tốt ~

8 tháng 6 2021

√13+4√10=√8+2.2.√2.5+513+410=8+2.2.2.5+5

=√(2√2)2+2.2√2.5+(√5)2=(22)2+2.22.5+(5)2

=√(2√2+√5)2=2√2+√5

11 tháng 8 2020

a) \(\sqrt{11-6\sqrt{2}}-\sqrt{27+10\sqrt{2}}\)

\(=\sqrt{9-6\sqrt{2}+2}-\sqrt{25+10\sqrt{2}+2}\)

\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(5+\sqrt{2}\right)^2}\)

\(=\left|3-\sqrt{2}\right|-\left|5+\sqrt{2}\right|\)

\(=3-\sqrt{2}-5-\sqrt{2}=-2-2\sqrt{2}\)

b) \(\sqrt{13-4\sqrt{3}}-\sqrt{16-8\sqrt{3}}\)

\(=\sqrt{12-4\sqrt{3}+1}-\sqrt{12-8\sqrt{3}+4}\)

\(=\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}-2\right)^2}\)

\(=\left|2\sqrt{3}-1\right|-\left|2\sqrt{3}-2\right|\)

\(=2\sqrt{3}-1-2\sqrt{3}+2\)

\(=1\)

13 tháng 9 2018

\(\frac{9+4\sqrt{2}}{21}\)

5 tháng 12 2018

cho  P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\)  , Tìm GTLN của P  

22 tháng 6 2018

\(1.\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{5-2.\sqrt{2}.\sqrt{5}+2}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\text{|}\sqrt{5}-\sqrt{2}\text{|}-\text{|}\sqrt{5}+\sqrt{2}\text{|}=-2\sqrt{2}\)\(2.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}=\text{|}2\sqrt{2}+\sqrt{5}\text{|}+\text{|}2\sqrt{2}-\sqrt{5}\text{|}=4\sqrt{2}\)\(3.\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{3}+\sqrt{5}\right)\text{|}\sqrt{5}-\sqrt{2}\text{|}=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

22 tháng 6 2018

cau 3. gon nua dc ma

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

20 tháng 6 2019

\(\left(4+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{5}\right)\left(8-2\sqrt{15}\right)\)

7 tháng 9 2020

+) ĐKXĐ : \(x\ge-1\)

 \(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(TM\right)\)

+) ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow2x-x^2-4x-1-4=0\)

\(\Leftrightarrow-2x-x^2-5=0\)

\(\Leftrightarrow-\left(x^2+2x+1+4\right)=0\)

\(\Leftrightarrow-\left(x+1\right)^2=4\)

Vậy phương trình vô nghiệm

+) ĐKXĐ : với mọi x

\(\sqrt{x^2-6x+9}=x+1\) 

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|x-3\right|=x+1\)

Giải nốt

7 tháng 9 2020

\(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow-x^2-2x-5=0\)

\(\Leftrightarrow x^2+2x+5=0\)

có lẽ sai đề hoặc mình sai bạn kt lại phần này hộ

\(\sqrt{x^2-6x+9}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow x-3=x+1\)

\(\Rightarrow\)x không tồn tại