Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{40\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)
\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=2\sqrt{16.5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)
\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)
\(B=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)
\(=2\sqrt{11}.\sqrt{11}-3\sqrt{2}.\sqrt{11}+3\sqrt{22}=22\)
Đk: tự tìm
\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}\left(\sqrt{x+4}+1\right)=0\)
Dễ thấy: \(\sqrt{x+4}\ge0\forall x\)
\(\Rightarrow\sqrt{x+4}+1\ge1>0\forall x\) (vô nghiệm)
\(\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\)
Bài 1 )
a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)
b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)
Bài 2)
a)\(\sqrt{36x^2-12x+1}=5\)
\(\Leftrightarrow36x^2-12x+1=25\)
\(\Leftrightarrow36x^2-12x+1=25\)
\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)
\(\Leftrightarrow\left(6x-1\right)^2=25\)
\(\Rightarrow6x-1=5\)
\(\Leftrightarrow6x=6\)
\(\Rightarrow x=1\)
b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)
\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)
\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)
\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này
P/s tham khảo nha
1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)
=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)
=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)
=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)
=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)
b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)
=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)
=\(\sqrt{3}+1+1-\sqrt{3}\)
=\(1+1\)=\(2\)
2) a) \(\sqrt{36x^2-12x+1}=5\)
<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)
<=>\(\sqrt{\left(6x-1\right)^2}=5\)
<=>\(|6x-1|=5\)
Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)
Nên \(|6x-1|=6x-1\)
Ta có \(|6x-1|=5\)
<=> \(6x-1=5\)
<=> \(6x=6\)
<=> \(x=1\)(thỏa)
Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)
Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)
Ta có \(|6x-1|=5\)
<=> \(1-6x=5\)
<=> \(-6x=4\)
<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)
Vậy \(x=1\)và \(x=\frac{-2}{3}\)
b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)
<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)
<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)
<=>\(-4\sqrt{x-5}=12\)
<=> \(\sqrt{x-5}=-3\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)
<=>\(x-5=9\)
<=>\(x=14\)
Vậy x=14
Kết bạn với mình nhá
a. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+14\sqrt{2}=14-14\sqrt{2}+7+14\sqrt{2}=21\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{2\sqrt{5}-\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)
c. \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+2\sqrt{7}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)
Điều kiện xác định của phương trình : \(1\le x\le5\)
Xét vế trái của phương trình , áp dụng bđt Bunhiacopxki , ta có:
\(\left(2\sqrt{x-1}+3\sqrt{5-x}\right)^2\le\left(2^2+3^2\right)\left(x-1+5-x\right)\)
\(\Leftrightarrow\left(2\sqrt{x-1}+3\sqrt{5-x}\right)^2\le52\)
\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{5-x}\le2\sqrt{13}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}1\le x\le5\\\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{2}\end{cases}}\)\(\Leftrightarrow x=\frac{29}{13}\)
Vậy pt có nghiệm \(x=\frac{29}{13}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.