\(\sqrt{12345678987654321}=?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{12345678987654321=111111111}\)

18 tháng 7 2020

*Bài làm :

\(\sqrt{12345678987654321}=111111111\) 

Học tốt

7 tháng 6 2015

\(\sqrt{12345678987654321}\)=111111111

7 tháng 6 2015

\(\sqrt{12345678987654321}=111111111\)

4 tháng 8 2016

pn lấy đề ở đâu vậy ?

5 tháng 8 2016

Ở lớp học thêm c ạ

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B

28 tháng 5 2015

cách giải:

ta tính:

(111 111 111)\(^2\)=12345678987654321

do đó \(\sqrt{A=111111111}\)

29 tháng 5 2015

Bạn tự trả lời rồi còn hỏi làm gì nữa cho mệt người.

6 tháng 11 2018

a,>

b,vô lí

c,>

d,>

e<

7 tháng 11 2018

a) 26 lớn hơn 5

b) -4 nhỏ hơn (-2)^2

c) a+b lớn hơn a+b

d)9.16 lớn hơn 9.16

e)12+20+3042 nhỏ hơn 20