Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow6x^2+2x+8+\sqrt{3x^2+x+4}-18=0\)
\(\Leftrightarrow2\left(\sqrt[3]{3x^2+x+4}\right)^3+\sqrt[3]{3x^2+x+4}-18=0\)
=>\(3x^2+x+4=8\)
=>3x^2+x-4=0
=>x=1 hoặc x=-4/3
b: ĐKXĐ: x>0
Pt sẽ là \(x+8+9x-6\sqrt{x\left(x+8\right)}=0\)
=>\(10x+8=\sqrt{36x\left(x+8\right)}\)
=>36x^2+288x=100x^2+160x+64
=>x=1
ĐKXĐ các bài bạn tự tìm nhé!
a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
Bình phương 2 vế
=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
=>16x2-14x-2=21x2-23x-20
<=>5x2-9x-18=0
<=>x=3 hoặc x=\(-\dfrac{6}{5}\)
Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)
b)
\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)
<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
*)x\(\ge10\)
<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)
<=>\(2\sqrt{x-1}=6\)
<=>x=10(TM)
*)5\(\le x< 10\)
<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)
*)1\(\le x< 5\)
<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)
<=>\(2\sqrt{x-1}=4\)
<=>x=5(L)
Vậy 5\(\le x\le10\)
c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)
Vế trái: Áp dụng BĐT Bunhia
Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)
=>Vế trái \(\le4\)(2)
Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)
Vậy PTVN
d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)
Bình phương 2 vế
=>x2-x=x2+x-2
<=>2x=2
<=>x=1
Thử lại thõa mãn Vậy x=1
1) + ĐK : tự xử
+ pt đã cho \(\Leftrightarrow\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
\(\Rightarrow8x+1-2x+2-2\sqrt{16x^2-14x-2}=7x+4-3x+5-2\sqrt{21x^2-23x-20}\)
\(\Rightarrow10x-1-2\sqrt{16x^2-14x-2}=10x-1-\sqrt{21x^2-23x-20}\)
\(\Rightarrow16x^2-14x-2=21x^2-23x-20\Rightarrow5x^2-9x-18=0\Rightarrow\left[{}\begin{matrix}x=3\left(N\right)\\x=-\dfrac{6}{5}\left(L\right)\end{matrix}\right.\)
kl: x=5
P/s: + x=5 có nhận hay không phụ thuộc vào đk ở đầu bài, bạn tự giải rồi xét
+ bài này dùng dấu => , không dùng <=>, dùng <=> được nửa số điểm, nếu là gv khó tính sẽ gạch toàn bộ bài
\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )
⇔ \(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )
+) Với : \(\sqrt{x-1}>2\) ⇔ \(x>5\) , ta có :
( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)
⇔ \(2\sqrt{x-1}=5\) ⇔ \(x=\dfrac{29}{4}\left(TM\right)\)
+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :
( 1) ⇔ \(5=5\) ( luôn đúng )
KL.............
\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
⇔ \(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)
⇔ \(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)
Tới đây giải tương tự như trên nhé .
Còn lại Tương tự .
mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)
ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)
** lấy căn lớn đầu tiên của câu a làm vd**
\(a^2+b=x+3\) (1)
\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)
(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)
thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)
Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))
ráp a, căn b vào công thức (#), ta đc:
\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)
***************
sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.
Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:
\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)
chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)
(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)
dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)
\(A=\frac{x\sqrt{x}-2x+28}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\frac{\left(\sqrt{x}-4\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x\sqrt{x}-4x-\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\sqrt{x}-1\)
\(B=\sqrt{6+2\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
Giải câu d thôi mấy câu còn lại đơn giản lắm nên bạn tự làm.
d/ \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Điều kiện \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow|2-\sqrt{x-1}|+|3-\sqrt{x-1}|=1\)
Đây chỉ là phương trình cơ bản của trị tuyệt đối lớp 6, 7 học rồi nên bạn tự làm nhé.
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=0\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=0\\ \Leftrightarrow\sqrt{x-1}=5\Leftrightarrow x-1=25\\ \Leftrightarrow x=26\left(tm\right)\)