\(\sqrt{-x^2+2x-1}\) xác định khi và chỉ khi:

A.xϵR B.x=1 C.xϵ∅ D.x≥1

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

$\sqrt{x^2+2x-1}$ xác định khi và chỉ khi $x^2+2x-1\geq 0$

$\Leftrightarrow (x+1)^2\geq 2$

$\Leftrightarrow x+1\geq \sqrt{2}$ hoặc $x+1\leq -\sqrt{2}$

$\Leftrightarrow x\geq \sqrt{2}-1$ hoặc $x\leq -\sqrt{2}-1$

Trong các đáp án trên may ra có đáp án D là bao quát nhất.

30 tháng 3 2020

\(\sqrt{-x^2+2x-1}\) dạ bạn ơi đề này mới đúng ạ mình đánh thiếu ý

bạn giải lại giúp mình đc kh ạ

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

2 tháng 8 2019

ĐK \(x\ge-\frac{1}{2}\)

Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:

\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)

Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:

\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:

\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)

Vậy...

20 tháng 8 2017

a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)

b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)

c) \(x^2+2x+1=\left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

5 tháng 6 2018

ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)

<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

5 tháng 6 2018

\(x\ge\frac{1}{2}\)

16 tháng 9 2018

cho mình sửa lại đề là cho biểu thức