\(\angle{MCE} = \angle{MDE}\) (cùng nằm trên cùng MCD) \(\angle{OME} = \angle{ODE}\) (cùng nằm trên c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Chọn B

20 tháng 9 2019

1) Ta có: \(BC^2+AC^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2=3a^2+2a^2=5a^2\)(1)

\(AB^2=\left(a\sqrt{5}\right)^2=5a^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=AB^2\)

Suy ra tam giác ABC vuông tại C

2) Các tỉ số lượng giác của góc B

\(sinB=\frac{AC}{AB}\)

\(cosB=\frac{BC}{AB}\)

\(tanB=\frac{AC}{BC}\)

\(cotB=\frac{BC}{AC}\)

Suy ra các tỉ số lượng giác của góc A là:

\(sinA=\frac{BC}{AB}\)

\(cosA=\frac{BC}{AB}\)

\(tanA=\frac{BC}{AC}\)

\(cotA=\frac{AC}{BC}\)

20 tháng 9 2019

câu 2. Em chưa tính các tỉ số @ctk_new@

17 tháng 6 2018

sai đề bài bạn ạ

17 tháng 6 2018

vì tam giác ABC vuông tại A rùi nên AC là đường cao, chỉ có đg cao CH thui bạn

16 tháng 8 2016

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2

11 tháng 2 2017

ok

28 tháng 7 2019

\(T=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x-1}\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{2x+2}{x-1}\)

\(\Rightarrow T=\frac{2x+2}{\sqrt{x}}\)

28 tháng 7 2019

\(T=8\Leftrightarrow\frac{2x+2}{\sqrt{x}}=8\)

\(\Leftrightarrow x+1=4\sqrt{x}\)

\(\Leftrightarrow x^2+2x+1=8x\)

\(\Leftrightarrow x^2-6x+1=0\)

\(\Delta=\left(-6\right)^2-4.1.1=36-4=32,\sqrt{\Delta}=\sqrt{32}\)

Vậy pt có 2 nghiệm phân biệt x1; x2

\(x_1=\frac{6+\sqrt{32}}{2}=3+\sqrt{8}\);\(x_2=\frac{6-\sqrt{32}}{2}=3-\sqrt{8}\)

27 tháng 10 2016

1) cm : \(\Delta BHD\infty\Delta BCE\) \(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH.BE=BC.BD\)

\(\Rightarrow BH.BE+BC.BD=BC.BD+BC.DC=BC^2\)

mà BC=2BM =>BC2=4BM2

=>\(\Rightarrow BH.BE+BC.DC=4BM^2\)

2) \(CM:\tan B=\frac{AD}{BD}\)

tan BHD =\(\frac{BD}{HD}\)

mà góc BHD= góc C

=>tan C=\(\frac{BD}{HD}\)

=> tanB.tanC=\(\frac{AD}{BD}.\frac{BD}{HD}=\frac{AD}{HD}\)