Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bi của An là a ; số bi của Bảo là b , số bi của Chi là c (a;b;c \(\inℕ^∗\))
Ta có c - a = 4
Lại có \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}a=4.2=8\\b=5.2=10\\c=6.2=12\end{cases}}\)(tm)
Vậy số bi của An là 8 viên ; số bi của Bảo là 10 viên , số bi của Chi là 12 viên
Gọi số viên bi của 3 bạn An, Bảo, Chi lần lượt là: a, b, c ( \(a,b,c\inℕ^∗\))
Theo bài ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)và \(c-a=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{4}{2}=2\)
\(\Rightarrow a=2.4=8\); \(b=2.5=10\); \(c=2.6=12\)
Vậy số bi của 3 bạn An, Bảo, Chi lần lượt là 8, 10, 12 viên bi
Gọi số bi của Chi và Phong lần lượt là A và B, ta có:
\(\dfrac{A}{B}=\dfrac{5}{6}\); \(B-A=5\)
Từ tỉ lệ thức \(\dfrac{A}{B}=\dfrac{5}{6}\) suy ra:
\(\dfrac{A}{B}=\dfrac{5}{6}\Rightarrow\dfrac{A}{5}=\dfrac{B}{6}\)
Theo tính của dãy tỉ số bằng nhau, ta có:
\(\dfrac{B}{6}=\dfrac{A}{5}=\dfrac{B-A}{6-5}=\dfrac{5}{1}=5\)
\(\Rightarrow A=5.5=25\)
\(B=6.5=30\)
Vậy số bi của Chi là 25 viên
Số bi của Phong là 30 viên
Gọi số bi của Chi và Phong là x , y ( x , y \(\in\) N , y > x )
Theo đề bài ta có : x , y tỉ lệ 5/6
=> \(\frac{x}{y}=\frac{5}{6}\)=> \(\frac{x}{5}=\frac{y}{6}\)và y - x = 5
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{6}=\frac{y-x}{6-5}=\frac{5}{1}=5\)
\(\frac{x}{5}=5\Rightarrow x=5\cdot5=25\)
\(\frac{y}{6}=5\Rightarrow y=5\cdot6=30\)
Vậy Chi có 25 viên bi
Phong có 30 viên bi
Bài 1 : Gọi số viên bi của ba bạn là : a, b,c, theo đề bài ta có : a/3,b/4, c/5 và a + b + c = 60.Áp dụng tính chất dãy tỉ số bằng nhau:
a/3,b/4,c/5 = a+ b+ c / 3 + 4 + 5 = 60/12= 5
a/3 = a = 5 . 3 = 15
b/4 = b = 5 . 4 = 20
c/5 = c = 5. 5 = 25
Vậy số bi ba bạn lần lượt có là 15, 20 và 25
Bài 1 bạn Hà Thu Trang làm r nhé :))
Giờ mình làm bài 2,3,4
Bài 2 :
Gọi số hoa điểm tốt của ba lớp lần lượt là x,y,z(điểm)\(\left(x,y,z\inℕ^∗\right)\)
Theo điều kiện của đề bài ta có : \(x:y:z=7:5:8\)hoặc \(\frac{x}{7}=\frac{y}{5}=\frac{z}{8}\)và \(4x+3y-2z=108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{8}=\frac{4x}{28}=\frac{3y}{15}=\frac{2z}{16}=\frac{4x+3y-2z}{28+15-16}=\frac{108}{27}=4\)
=> \(\hept{\begin{cases}\frac{x}{7}=4\\\frac{y}{5}=4\\\frac{z}{8}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=32\end{cases}}\)
Vậy số hoa điểm tốt của lớp 7A,7B,7C lần lượt là 28 điểm,20 điểm,32 điểm
Bài 3 :
Gọi số cây của mỗi lớp lần lượt là x.y.z(cây) \(\left(x,y,z\inℕ^∗\right)\)
Theo điều kiện của đề bài ta có : \(x:y:z=9:7:8\)hoặc \(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}\)và \(x-y=22\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}=\frac{x-y}{9-7}=\frac{22}{2}=11\)
=> \(\hept{\begin{cases}\frac{x}{9}=11\\\frac{y}{7}=11\\\frac{z}{8}=11\end{cases}}\Rightarrow\hept{\begin{cases}x=99\\y=77\\z=88\end{cases}}\)
Vậy số cây của lớp 7A,7B,7C trồng được lần lượt là 99 cây,77 cây,88 cây
Bài 4 :
Gọi số máy của đội thứ nhất,thứ hai,thứ ba lần lượt là x,y,z \(\left(x,y,z\inℤ^∗\right)\)
Theo điều kiện của đề bài ta có : x - y = 2
Cày cùng một diện tích như nhau và công suất của các máy không thay đổi thì số máy và số ngày làm việc là hai đại lượng tỉ lệ nghịch.Ta có :
\(4x=6y=8z\)hoặc \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{1}{12}}=24\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=24\\\frac{y}{\frac{1}{6}}=24\\\frac{z}{\frac{1}{8}}=24\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)
Vậy : ...
Gọi số bi của 3 bạn lần lượt là a,b,c
Theo bài ra, ta có:
a/2 = b/4 = c/5 và a + b + c = 44
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
Suy ra: \(\frac{a}{2}=4\Rightarrow a=4\cdot2=8\)
\(\frac{b}{4}=4\Rightarrow b=4\cdot4=16\)
\(\frac{c}{5}=4\Rightarrow c=4\cdot5=20\)
Vậy Minh có 8 viên bi, Hùng có 16 viên bi, Dũng có 20 viên bi
Gọi tổng số vở chia cho 3 lớp là: M ( M> 12; quyển vở)
+) Gọi số vở của 3 lớp 7 gồm A; B; C dự định chia là: a; b; c ( \(\inℕ^∗\); quyển vở)
=> \(\frac{a}{7}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{7}=\frac{b}{6}=\frac{c}{5}=\frac{a+b+c}{7+6+5}=\frac{M}{18}\)
=> \(\hept{\begin{cases}a=\frac{7M}{18}\\b=\frac{6M}{18}\\c=\frac{5M}{18}\end{cases}}\)
+) Gọi số vở của 3 lớp 7 gồm A; B; C thực tế chia là: x; y; z ( \(\inℕ^∗\); quyển vở)
=> \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{6+5+4}=\frac{M}{15}\)
=> \(\hept{\begin{cases}x=\frac{6M}{15}\\y=\frac{5M}{15}\\z=\frac{4M}{15}\end{cases}}\)
Bây giờ chúng ta sẽ đi tìm xem lớp nào thực tế nhận ít hơn là dự định:
+) Xét lớp 7A dự định nhận: \(\frac{7M}{18}\)quyển vở; thực tế nhận: \(\frac{6M}{15}\)quyển vở
mà \(\frac{7M}{18}< \frac{6M}{15}\) nên lớp 7A sẽ được nhận nhiều hơn
+) Xét lớp 7B dự định nhận: \(\frac{6M}{18}\)quyển vở; thực tế nhận: \(\frac{5M}{15}\)quyển vở
mà \(\frac{6M}{18}=\frac{5M}{15}\) nên số vở lớp 7B nhận đc không thay đổi
+ Xét lớp 7C dự định nhận: \(\frac{5M}{18}\)quyển vở; thực tế nhận: \(\frac{4M}{15}\)quyển vở
mà \(\frac{5M}{18}>\frac{4M}{15}\) nên lớp 7C sẽ được nhận ít hơn theo dự định
=> Số vở lớp 7C nhận được ít hơn là:
\(\frac{5M}{18}-\frac{4M}{15}=12\)
<=> \(M\left(\frac{5}{18}-\frac{4}{15}\right)=12\)
<=> \(M.\frac{1}{90}=12\)
<=> M = 1080
=> Theo thực tế số vở mỗi lớp nhận đc là:
\(\hept{\begin{cases}x=\frac{6.1080}{15}=432\\y=\frac{5.1080}{15}=360\\z=\frac{4.1080}{15}=288\end{cases}}\)( thỏa mãn)
Vậy số vở 3 lớp A; B; C nhận đc theo thứ tự là: 432 quyển vở; 360 quyển vở và 288 quyển vở.
Bài giải:
Gọi: Số bi của bạn Minh là: \(x\)( viên ) . Số bi của bạn Hùng là: \(y\)( viên ). Số bi của bạn Khang là: \(z\)( viên )
( Đk: \(x,y,z\inℕ^∗\))
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x+y+z=60\end{cases}}\)( Vì Số bi của ba bạn Minh, Hùng, Khang lần lược tỉ lệ vs 2; 3; 5 )
Áp dụng tính chất dãy tỉ số bằng nhau và giả thiết ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{60}{10}=6\)
\(\Rightarrow\hept{\begin{cases}x=6.2=12\\y=6.3=18\\z=6.5=30\end{cases}}\)
Chúc bạn học tốt !
Phần kết quả mk đánh nhưng bị lỗi. Viết lại Đáp án nhé:
\(\Rightarrow\hept{\begin{cases}x=6.2=12\\y=6.3=18\\z=6.5=30\end{cases}}\)
Học tốt !
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{b-a}{5-4}=4\)
Do đó: a=16; b=20
Gọi số bi của An và Chi ll là a,b(viên;a,b∈N*)
Áp dụng tc dtsnb:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{b-a}{5-4}=4\\ \Leftrightarrow\left\{{}\begin{matrix}a=16\\b=20\end{matrix}\right.\)
Vậy ...
tác giả bài này học giỏi văn :>
Gọi số viên bi của Chi và Phong lần lượt là a, b (a,b > 0 )
Vì số viên bi của Chi và Phong tỉ lệ với \(\frac{5}{6}\)
\(\Leftrightarrow\frac{a}{b}=\frac{5}{6}\Leftrightarrow\frac{a}{5}=\frac{b}{6}\) và b - a = 5
Theo tính chất dãy tỉ số bằng nhau
\(\frac{a}{5}=\frac{b}{6}=\frac{b-a}{6-5}=5\)
\(\hept{\begin{cases}\frac{a}{5}=5\Leftrightarrow a=5.5=25\\\frac{b}{6}=5\Leftrightarrow b=6.5=30\end{cases}}\)
Vậy số viên bi của Chi là 25 của phong là 30