Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn là: CMR:Tổng bình phương của 4 số tự nhiên liên tiếp không phải là số chính phương
Gọi 4 số đó là n; n + 1; n + 2; n + 3
Ta có:
Đặt A = n(n + 1)(n + 2)(n + 3)
=> A + 1 = n(n + 1)(n + 2)(n + 3) + 1
=> A + 1 = [n(n + 3)][(n + 1)(n + 2)] + 1
=> A + 1 = (n2 + 3n)(n2 + 3n + 2) + 1
=> A + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1
=> A + 1 = (n2 + 3n + 1)2 là số chính phương
A = (n2 + 3n)2 + 2(n2 + 3n)
Lại có:
(n2 + 3n)2 < (n2 + 3n) + 2(n2 + 3n) = A và A < A + 1
=> (n2 + 3n)2 < A < A + 1
=> (n2 + 3n)2 < A < (n2 + 3n + 1)2
=> A không là số chính phương (Vì (n2 + 3n)2 và (n2 + 3n + 1)2 là 2 số chính phương liên tiếp)
Vậy...
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
9 = 32; 81 = 92; 121 = 112 vậy 9; 81; 121 là số chính phương (theo khái niệm về một số chính phương)
392 có tận cùng là 2 vậy 392 không phải là số chính phương vì số chính phương không thể có tận cùng là 2; 3; 7; 8 (theo tính chất của một số chính phương)
9, 81, 121 là số chính phương. 392 không phải nhé.