Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)
Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
nên \(\left(2a-2\right).2a.\left(2a+2\right)\)
Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)
Bài 2
a) \(\left(5^n-1\right)⋮4\)
Nếu \(n=1\)thì \(5^n-1=4⋮4\)
Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho \(4\)
Vậy \(\left(5^n-1\right)⋮4\)
b) \(\left(10^n+18n-1\right)⋮27\)
Ta có :\(10^n-1=99.....9\)(n chữ số 9)
\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )
Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)
\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)
Chúc bạn học tốt ( -_- )
Do A = x183y chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y
Vì A = x183y chia cho 9 dư 1
→ x183y - 1 chia hết cho 9
→ x183y chia hết cho 9
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
a)
= 48 + 288 : ( x - 3 )2 = 50
288 : ( x - 3 )2 = 50 - 48
288: ( x - 3 )2= 2
(x - 3 )2= 288 : 2
(x - 3)2= 144
(x - 3)2 = 122
x - 3 = 12
x = 12 + 3 = 15
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )