Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\) \(C\)
\(a = b.q \) \(\left(a,b,q\in N\right)\) \(\left(b\ne0\right)\)
Thì:
\(a\) là số bị chia
\(b\) là thương
\(q\) là số chia
Khẳng định sai là \(b\) \(⋮\) \(a\) vì \(a\) chính là bội của \(b\) nên \(b\) không thể chia hết cho \(a\) trừ khi \(a = b\)
A, Nếu a là bội của b , b là bội của c thì a là bội của c
B, Nếu a là ước của b , b là ước của c thì a là ước của c
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
B
B