Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thỏ ở chuồng A, số thỏ ở cả 2 chuồng A và B ban đầu là: a;b
ta có: a = 2/5.b
a-3 = 1/3.(b-3)
thay số: 2/5.b - 3 = 1/3.(b-3)
2/5.b -3 = 1/3.b - 1
=> 2/5.b - 1/3.b = 3 -1
1/15.b = 2
b = 2: 1/15
b= 30
mà a= 2/5.b => a = 2/5.30 => a = 12
KL: số thỏ chuồng ban đầu là 12 con
số thỏ ban đầu là
đáp số 12 con
hok tốt
ta có 340:20 = 17
Một con gà có 2 chân và một con thỏ có 4 chân nên một nhóm có 6 chân
Tổng số gà và thỏ là:17 x 6 = 102
Tỉ số giữa thỏ và gà là\(\frac{2}{1}\)
Tổng số phần bằng nhau là:2 + 1 = 3 ( phần )
Có số thỏ là:102 : 3 x 2 = 68 ( con )
Đáp số:68 con
Số thỏ còn lại sau khi bán là: 60 x ( 1 - 3/5) = 24 ( con thỏ)
Mỗi chuồng có số con thỏ là: 24 / 4 = 6 ( con thỏ)
đáp số: 6 con thỏ
Giải :
Số con thỏ sau khi bán đi là :
60 . 3 : 5 = 36 ( con )
Mỗi chuồng nhốt số thỏ là :
36 : 4 = 9 ( con )
Đáp số : ...........
~ Hok tốt ~
chuồng 1: 5 con, tương tự với chuồng 2 và chuồng 3
chuồng 4 sẽ đựng 3 chuồng kia
Ta có: 15 : 4 = 3(dư 2)
Mà 3 là số lẻ nên
Có 3 con trong 1 chuồng thừa 2 con
Thì bạn chia bình thường thôi.
Mỗi chuồng có : 15 : 3 = 5 (con)
5 là số lẻ
k nha
Gọi số cách có thể nhốt thỏ vào chuồng là a
Ta có : 4 chia hết cho a
=> a thuộc Ư(4)
Mà Ư(4) = { 1 ; 2 ; 4 }
=> Có 1 cách nhốt thỏ vào chuồng đó là :
Nhốt thỏ vào hai cái chuồng , mỗi chuồng có 2 con
co 2 cach 1 la moi cai nhot 2 con
cach 2 la nhot mot ben 3 con ,mot ben 1 con
3 con thỏ ứng với số phần thỏ ở chuồng a là:
\(\frac{2}{5}-\frac{1}{3}=\frac{1}{15}\)( số phần thỏ ở chuồng a)
Chuồng a và b có số con là:
\(3:\frac{1}{15}=45\left(con\right)\)
Số thỏ lúc đầu ở chuồng a là:
\(45.\frac{2}{5}=18\left(con\right)\)
Vậy số thỏ lúc đầu ở chuồng a là 18 con
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn