
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 1:
Ta có:\(\frac{215}{216}< 1< \frac{104}{103}\)
Suy ra\(\frac{215}{216}< \frac{104}{103}\)
\(1,\)Vì \(\frac{215}{216}< 1< \frac{104}{103}\)
\(=>\frac{215}{216}< \frac{104}{103}\)
\(2,\)Vì \(-\frac{13}{27}< 1< \frac{13131313}{27272727}\)
\(=>-\frac{13}{27}< \frac{13131313}{27272727}\)
Nhớ ti.ck mk nha bn =)

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(x=-1.\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\).Do\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
\(\Leftrightarrow x=-1\)




\(2M=\frac{2^{103}+2}{2^{103}+1}=1+\frac{1}{2^{103}+1}\left(\cdot\right)\)
\(2N=\frac{2^{104}+2}{2^{104}+1}=1+\frac{1}{2^{104}+1}\left(\cdot\cdot\right)\)
\(\frac{1}{2^{103}+1}>\frac{1}{2^{104}+1}\Rightarrow1+\frac{1}{2^{103}+1}>1+\frac{1}{2^{104}+1}\left(\cdot\cdot\cdot\right)\)
Từ\(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow2M>2N\Leftrightarrow M>N.\)

a, \(\frac{-22}{35}>\frac{-22}{177}>\frac{-103}{177}\)
=>\(\frac{-22}{35}>\frac{103}{177}\)
b, \(\frac{-17}{23}>\frac{-17}{31}>\frac{-25}{31}\)
=>\(\frac{-17}{23}>\frac{-25}{31}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Nguyễn Mai
a) Phân số trung gian là: \(\frac{-103}{35}\)
Ta có: \(\frac{-22}{35}>\frac{-103}{35}>\frac{-103}{177}\Rightarrow\frac{-22}{35}>\frac{-103}{177}\)
b) Phân số trung gian là: \(\frac{-25}{23}\)
Ta có: \(\frac{-17}{23}>\frac{-25}{23}>\frac{-25}{31}\Rightarrow\frac{-17}{23}>\frac{-25}{31}\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{56}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{55}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{55}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{56}}\right)\)
\(A=1-\frac{1}{2^{56}}< 1\)
\(x=\frac{-10}{103}\)và \(y=\frac{13}{56}\)
Vì \(x=\frac{-10}{103}< 0\)(1)
\(y=\frac{13}{56}>0\)(2)
Từ (1) và (2)
\(\Rightarrow x< y\)
\(\frac{-10}{103}< \frac{13}{56}\)