
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50


Có: \(\sqrt{2015}< \sqrt{2016}\)
=>\(\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2016}}\)
=>\(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>0\)
=>\(\sqrt{2015}+\sqrt{2016}+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)
=>\(\left(\sqrt{2015}+\frac{1}{\sqrt{2015}}\right)+\left(\sqrt{2016}-\frac{1}{\sqrt{2016}}\right)>\sqrt{2015}+\sqrt{2016}\)
=>\(\frac{2016}{\sqrt{2015}}+\frac{2015}{\sqrt{2016}}>\sqrt{2015}+\sqrt{2016}\)

a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)


-Ta có: √29 > √25 =5
√3 > 1
√2003 >√1936 =44
-Cộng từng vế của ba bất đẳng thức ta được
√29 + √3 + √2003 > 1+5 +44 = 50
-Vậy √29 + √3 + √2003 = 50
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>\sqrt{25}+\sqrt{1}+\sqrt{1936}=5+1+44=50\)

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a > 0; b > 0; a \(\ne\) b ta có:
\(\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{2016+2014}{2}}\)
\(\Rightarrow\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{4030}{2}}\)
\(\Rightarrow\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{2015}\)
\(\Rightarrow\sqrt{2016}+\sqrt{2014}< 2.\sqrt{2015}\)
\(\Rightarrow\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)
\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)
50 bé hơn
đúng 100%