\(\sqrt{12}+\sqrt{7}và\sqrt{13}+\sqrt{6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

toán lớp 1 đây hả

5 tháng 7 2016

\(\sqrt{12}+\sqrt{7}< \sqrt{13}+\sqrt{6}\)

5 tháng 7 2016

\(\sqrt{27}\) +  \(\sqrt{6}\)>  \(\sqrt{35}\)

5 tháng 7 2016

căn 27 + căn 6 = 7,196156423

căn 35 = 5,916079783

=>căn 27 + căn 6 > căn 35

9 tháng 1 2021

bạn trung học hay tiểu học vậy

nhan giùm mk ,nha ,mk hok dốt lắm nên ms ko pít

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

4 tháng 5 2016

ko hiểu

4 tháng 5 2016

bài này là lớp 9

21 tháng 9 2019

Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.

21 tháng 9 2019

Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)

Xét dấu nó thì e chỉ cần xét từng cái là được

Cái thứ nhất:

\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Cái thứ 2:

\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)

\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)

Kết hợp cả 2 điều kiện thì suy ra được

\(x=z=0;y=3\)