\(\sqrt{11}\) - \(\sqrt{3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Có: \(\sqrt{16}-\sqrt{4}=4-2=2\)

mà \(\sqrt{16}>\sqrt{11};\sqrt{4}>\sqrt{3}\) nên \(\sqrt{16}-\sqrt{4}>\sqrt{11}-\sqrt{3}hay\sqrt{11}-\sqrt{3}< 2\)

23 tháng 7 2018

ta có :

\(\left(\sqrt{11}-\sqrt{3}\right)^2=8-2\sqrt{33}\)

\(2^2=4\)

Do \(4>8-2\sqrt{33}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

25 tháng 9 2018

Sử dụng bảng căn bậc hai, thử lại các kết quả bằng cách tra bảng căn bậc hai cho các kết quả vừa tìm được.

a: x=2,25

b: x=4,6225

c: x=0,2704

c: x=361/250000

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

7 tháng 11 2016

Bài 3:

Xét họ đường cong \(\left(C_m\right):y=f_m\left(x\right)=mx^4\) và các đường thẳng \(d_m:y=k_mx+n_m\),

với \(x\in\left(0;3\right)\)\(m=1,2,3\)

Điều kiện \(\left(C_m\right)\) tiếp xúc với \(d_m\)

\(\begin{cases}mx^4=k_mx+n_m\\4mx^3=k_m\end{cases}\)\(,m=1,2,3\)

Ta cần chọn x1,x2,x3 thỏa mãn

\(\begin{cases}k_1=4x_1^3;k_1=k_2=k_3=k\\k_2=8x_2^3\\k_3=12x_3^3\\x_1+x_2+x_3=3\end{cases}\)\(\Rightarrow\begin{cases}x^3_1=2x^3_2=3x^3_3\\x_1+x_2+x_3=3\end{cases}\)

\(\Rightarrow\begin{cases}x_1=\frac{3\sqrt[3]{6}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}}\\x_2=\frac{x_1}{\sqrt[3]{2}}\\x_3=\frac{x_1}{\sqrt[3]{3}}\end{cases}\).Suy ra \(k=4x_1^3=\frac{648}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

\(n_1+n_2+n_3=-3x_1^4\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)=-\frac{1458}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Mặt khác: \(f_m^n\left(x\right)=12mx^2>0,\forall x\in\left(0;3\right)\),suy ra \(f_m\left(x\right)\) là hàm lồi trên khoảng \(\left(0;3\right)\).

Do đó, trên khoảng (0;3) đường cong \(\left(C_m\right)\) không nằm phía dưới tiếp tuyến \(\left(d_m\right)\),tức là \(f_m\left(x\right)\ge g_m\left(x\right),\forall x\in\left(0;3\right)\) (*)

Từ hệ thức (*),ta có:

\(a^4\ge ka+n_1\)

\(2b^4\ge kb+n_2\)

\(3c^4\ge kc+n_3\)

Cộng theo vế ta có:

\(P\ge k\left(a+b+c\right)+n_1+n_2+n_3\)

\(=3k+n_1+n_2+n_3\)

\(=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Vậy GTNN của \(P=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\) khi \(a=x_1;b=x_2;c=x_3\)

 

7 tháng 11 2016

2/ Áp dụng BĐT BCS : \(25=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\le\sqrt{2\left(x^2+y^2\right)}.\left(x^3+y^3\right)\)

\(\Rightarrow x^3+y^3\ge\frac{25}{\sqrt{2.5}}=\frac{5\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(\begin{cases}\frac{\sqrt{x}}{\sqrt{x^3}}=\frac{\sqrt{y}}{\sqrt{y^3}}\\x=y\\x^2+y^2=5\end{cases}\) \(\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

Vậy MinP = \(\frac{5\sqrt{10}}{2}\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)