Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
+) \(\frac{10^8}{10^7}\)-1= 108-7-1=10-1=9 (1)
+) \(\frac{10^7}{10^6}\)-1= 107-6-1=10-1=9 (2)
Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1
Vậy..
Câu 1:
Gọi $d=ƯC(n, n+1)$
$\Rightarrow n\vdots d; n+1\vdots d$
$\Rightarrow (n+1)-n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯC(n, n+1)=1$
Câu 2:
Gọi $d=ƯC(5n+6, 8n+7)$
$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$
$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$
$\Rigtharrow 13\vdots d$
$\Rightarrow d\left\{1; 13\right\}$
5/
+/ n-1=(n+5)-6 => để n-1 là bội của n+5 thì 6 phải chia hết cho n+5 => n+5={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-11, -8, -7, -6, 1, 2, 3, 4}. (1)
+/ n+5=n-1+6 => để n+5 là bội của n-1 thì 6 phải chia hết cho n-1 => n-1={-6, -3, -2, -1, 1, 2, 3, 6}
=> n={-5; -2; -1; 0; 2; 3; 4; 7} (2)
Từ (1) và (2), để thỏa mãn đầu bài thì n={2; 3; 4}
6) a) n2-7=n2+3n-3n-9+2 = n(n+3)-3(n+3)+2
=> Để n2-7 là bội của n+3 thì 2 phải chia hết cho n+3 => n+3={-2, -1, 1, 2} => n={-5; -4; -2; -1}
1)
Ta có:
x + 10 chia hết cho 5
10 chia hết cho 5
\(\Rightarrow\)x chia hết cho 5
x - 18 chia hết cho 6
18 chia hết cho 6
\(\Rightarrow\)x chia hết cho 6
x + 21 chia hết cho 7
21 chia hết cho 7
\(\Rightarrow\)x chia hết cho 7
\(\Rightarrow\)x \(\in\)BC ( 5;6;7 )
BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }
Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630
ta có
5/6 = 5(6 + n)/6(6+n)=5.6 + 5n/6(6+n)=30 + 5n/6(6+n)
5+n/6+n=6(5+ n)/6(6+n)=6.5 + 6n/6(6+n)=30+6n/6(6+n)
vì 6n > 5n
nên 30 + 5n< 30+6n
vì 30 + 6n > 30+ 5n
nên 30 + 6n/ 6(6+6n)>6n/6(6+n)
vì 30 + 6n/ 6(6+6n)>30 + 5n/6(6+n)
nên 6(5+ n)/6(6+n)> 5(6 + n)/6(6+n)
vì 6(5+ n)/6(6+n)> 5(6 + n)/6(6+n)
nên 5/6 > 5+n/6+n
Ta có : \(\frac{5}{6}=\frac{5\left(6+n\right)}{6\left(6+n\right)}=\frac{30+5n}{36+6n}\)
\(\frac{5+n}{6+n}=\frac{6\left(6+n\right)}{6\left(6+n\right)}=\frac{36+6n}{36+6n}\)
Vì 30+5n<36+6n nên \(\frac{30+5n}{36+6n}< \frac{36+6n}{36+6n}\)
hay \(\frac{5}{6}< \frac{5+n}{6+n}\)
Vậy \(\frac{5}{6}< \frac{5+n}{6+n}\).
Ta có:\(\frac{n+1}{n+7}=\frac{2.\left(n+1\right)}{2.\left(n+7\right)}=\frac{2n+2}{2n+14}=\frac{2n+2}{2n+14}=1-\frac{12}{2n+14}\)
\(\frac{n+2}{n+6}=\frac{3.\left(n+2\right)}{3.\left(n+6\right)}=\frac{3n+6}{3n+18}=1-\frac{12}{3n+18}\)
Vì \(\frac{12}{2n+14}>\frac{12}{3n+18}\) nên \(\frac{n+1}{n+7}<\frac{n+2}{n+6}\)