Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(-77)77<0
(-88)66=8866>0
⟹ (-77)77<0<(-88)66
⟹(-77)77<(-88)66
\(\left(-77\right)^{77}=\left(\left(-77\right)^7\right)^{11}=-539^{11}\)
\(\left(-88\right)^{66}=\left(\left(-88\right)^6\right)^{11}=528^{11}\)
Vì: \(-539< 528\) Nên: \(-539^{11}< 528^{11}\)
Vậy: \(\left(-77\right)^{77}< \left(-88\right)^{66}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Theo t/c dảy tỉ số = nhau:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1
=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2
=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3
Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).
a. Áp dụng t/c tỉ số = nhau làm tương tự.
\(a,\) \(x.0,\left(2\right)+0,\left(3\right)=0,\left(77\right)\)
⇔ \(x.2.0,\left(1\right)+3.0,\left(1\right)=77.0,\left(01\right)\)
⇔ \(2x.\dfrac{1}{9}+3.\dfrac{1}{9}=77.\dfrac{1}{99}\)
⇔ \(2x.\dfrac{1}{9}+\dfrac{1}{3}=\dfrac{7}{9}\)
⇔ \(2x.\dfrac{1}{9}=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{4}{9}\)
⇔ \(2x=\dfrac{4}{9}:\dfrac{1}{9}=4\)
⇔ \(x=4:2=2\)
Vậy \(x=2\)
\(b,\) \(0,\left(153\right):0,\left(123\right)=1\dfrac{10}{41}.x\)
⇔ \(153.0,\left(001\right):\left[123.0,\left(001\right)\right]=\dfrac{51}{41}.x\)
⇔ \(153.\dfrac{1}{999}:\left(123.\dfrac{1}{999}\right)=\dfrac{51}{41}.x\)
⇔ \(\dfrac{17}{111}:\dfrac{41}{333}=\dfrac{51}{41}.x\)
⇔ \(\dfrac{51}{41}=\dfrac{51}{41}x\)
⇔ \(x=\dfrac{51}{41}:\dfrac{51}{41}=1\)
Vậy \(x=1\)
a)x.0,(2)+0,(3)=0,(77)
x.0,(2)=0,(77)-0,(3)
x.0,(2)=0,47
x=0,47:0,(2)
x=0,77
b) 0,(153):0,(123)=1/10/41.x
1,24390=1/10/41.x
x=1/10/41:1,24390
x=1
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
\(\left[\frac{7}{11}+\frac{4}{11}\right]:\left[\frac{1}{3}.3+\frac{77}{333}:\frac{77}{333}\right]\)
= 1 : [ 1 + 1 ]
= 1 : 2
= \(\frac{1}{2}\)
vì \(\left(-77\right)^{77}\)có lủy thừa lẻ nên là số âm
còn\(\left(-88\right)^{66}\)thì nguocj lại nên là số dương
k để cứu bé mèo
Ta có : \(\left(-77\right)^{77}\)là số âm . Vì số âm mũ lên lũy thừa bậc lẻ cũng đc một số âm
\(\left(-88\right)^{66}\)là số dương . Vì số âm mũ lên lũy thừa bậc chẵn thì đc một số dương
\(\Rightarrow\left(-88\right)^{66}>\left(-77\right)^{77}\)