\(\frac{7^{58}+2}{7^{57}+2}và\frac{7^{57}+2017}{7^{56}+2017}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :

             \(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)

             ''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :

             \(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)

           Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)

         Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)

         Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)

         Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)

27 tháng 6 2016

ta thấy: A= 10^m+2/10^m-1>10^m/10^m-1

mà B=10^m/10^m-3<10^m/10^m-1         (m thuộc N * ) ;

=> A<B

tương tự (phân số trung gian)

26 tháng 2 2017

ồ thú vị đấy mình học rồi nhưng busy thông cảm ha^_^

26 tháng 2 2017

ngoài ra a/b>1 thì a+m/b+m > 1 (m thuộc z, m khác 0) và a,b cậu biết rồi đó

11 tháng 3 2018

Đặt A= \(\frac{7^{2015}+1}{7^{2017}+1}\) 

B= \(\frac{7^{2017}+1}{7^{2019}+1}\)

Ta có  A= \(\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}\)

           = \(\frac{7^{2017}+49}{7^{2019}+49}\)

         = \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)

Vì \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)>\(\frac{7^{2017}+1}{7^{2019}+1}\)

=> A>B

K MK NHA !        

11 tháng 3 2018

Bạn tham khảo nhé 
Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{7^{2017}+1}{7^{2019}+1}< \frac{7^{2017}+1+48}{7^{2019}+1+48}=\frac{7^{2017}+49}{7^{2019}+49}=\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}=\frac{7^{2015}+1}{7^{2017}+1}=B\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~

\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)

\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)

mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)

nên E<F