\(\frac{10}{11},\frac{12}{13},\frac{15}{16}\)                           
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Ta có:

\(\frac{10}{11}+\frac{1}{11}=1\)                           \(\frac{15}{16}+\frac{1}{16}=1\)

\(\frac{12}{13}+\frac{1}{13}=1\)

Vì \(\frac{1}{11}>\frac{1}{13}>\frac{1}{16}\)\(\Rightarrow\frac{10}{11}< \frac{12}{13}< \frac{15}{16}\)

b.

Ta có: \(\frac{-497}{496}>\frac{-497}{815}>\frac{-816}{815}\)

\(\Rightarrow\frac{-497}{496}>\frac{-816}{815}\)

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

21 tháng 5 2017

d)

đặt A = 1 + 2 + 22 + ... + 280 

2A = 2 + 22 + 23 + ... + 281

2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )

A = 281 - 1 > 281 - 2

e) 

đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)

\(=1-\frac{1}{30}=\frac{29}{30}< 1\)

\(\Rightarrow A< 29\)

30 tháng 9 2020

So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12

23 tháng 6 2018

trả lời giúp mình nha! mình sẽ cho  ^^

23 tháng 6 2018

11/14   12/13     15/15    33/32    34/31

18 tháng 5 2021

\(a.\)

\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)

\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)

\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)

\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)

\(10A=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)

\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)

\(10B=1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)

19 tháng 5 2021

xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)

\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

15 tháng 3 2017

Ta có:

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)

\(...............\)

\(\frac{1}{19}>\frac{1}{20}\)

\(\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )

\(\Rightarrow S>\frac{1}{2}\)

Vậy: \(S>\frac{1}{2}\)

14 tháng 3 2017

S>1/2

14 tháng 3 2017

tổng trên bằng 0,609947873 và lớn hơn 1/2 đó bn 

8 tháng 3 2017

S lớn hơn 

                        k mình mình k lại

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé