Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
BÀI 1:
\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)
\(\Rightarrow DPCM\)
BÀI 2 :
TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)
= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1
ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)
\(\Rightarrow A>B\)
\(D=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow D=\frac{100.\left(100^{15}+1\right)}{100.\left(100^{16}+1\right)}\)
\(\Rightarrow D=\frac{100^{16}+100}{100^{17}+100}\)
Vì \(\forall a;b\inℕ^∗;a< b;b\ne0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
\(\Rightarrow C=\frac{100^{16}+1}{100^{17}+1}< \frac{100^{16}+1+99}{100^{17}+1+99}\)
\(\Rightarrow C< \frac{100^{16}+100}{100^{17}+100}=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow C< D\)
(-1/16)100= ((-1/2)4)100= (-1/2)4.100=(-1/2)400= (1/2)400
(-1/2)50=(1/2)50
Vì: (1/2)400> (1/2)50
=> (-1/16)100 > (-1/2)50
(-1/16)100= ((-1/2)4)100= (-1/2)4.100=(-1/2)400= (1/2)400
(-1/2)50=(1/2)50
Vì: (1/2)400> (1/2)50
=> (-1/16)100 > (-1/2)50