Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 = √4 => √26 - √8 > 2
b) Dễ thấy √29 chắc chắn nhỏ hơn √41 => √29-√41 chắc chắn âm, còn 5=√25 => kết quả sẽ ra dương(√25>√10)
Suy ra √29 - √41 < 5- √10
Đây chỉ là cách tính nhanh của mình ,bn có thể dùng máy tính để tính lại.
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
\(a\)
\(\sqrt{11}+\sqrt{19}\)
\(=\)\(\sqrt{11+19}\)
\(=\)\(\sqrt{30}\)
\(=\)\(5,47\)
\(\sqrt{47}\)
\(=6,85\)
\(5,47\)\(< \)\(6,85\)
\(=>\)\(\sqrt{11}+\sqrt{19}\)\(< \)\(\sqrt{47}\)
\(b\)
\(\sqrt{7}+\sqrt{26}+1\)
\(=\)\(\sqrt{7+26}+1\)
\(=\)\(\sqrt{33}+1\)
\(=\)\(5,74+1\)
\(=\)\(6,74\)
\(\sqrt{63}\)
\(=\)\(7,93\)
\(6,74\)\(< \)\(7,93\)
\(=>\)\(\sqrt{7}+\sqrt{26}+1\)\(< \)\(\sqrt{63}\)
Học tốt!!!
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
a)
Ta có:
\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)
\(=31+2\sqrt{130}\)(1)
Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)
Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)
a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)
b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)
\(\sqrt{65}>\sqrt{64}=8\)
\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)