\(A=\frac{2^{2008}-3}{2^{2007}-1}\) và \(B=\frac{2^{200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

Biết nhưng ko trả lời

 

 

26 tháng 3 2017

ki bo quá nhỉ bạn ấy bỏ rùi hiha

7 tháng 10 2016

Ta có: \(\frac{2^{2008}-3}{2^{2007}-1}=\frac{\left(2^{2008}-2\right)-1}{2^{2007}-1}=\frac{2\left(2^{2007}-1\right)-1}{2^{2007}-1}=2-\frac{1}{2^{2007}-1}\)

CMTT ta có \(\frac{2^{2007}-3}{2^{2006}-1}=2-\frac{1}{2^{2006}-1}\)

MÀ 22006-1<22007-1 => \(\frac{1}{2^{2006}-1}>\frac{1}{2^{2007}-1}\Rightarrow2-\frac{1}{2^{2006}-1}< 2-\frac{1}{2^{2007}-1}\)

Từ đó \(\Rightarrow\frac{2^{2008}-3}{2^{2007}-1}>\frac{2^{2007}-3}{2^{2006}-1}\)

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

21 tháng 7 2016

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}\right)-\left(\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}+\frac{1}{a^n}\right)\)

\(=1-\frac{1}{a^n}< 1\Rightarrow S_n< \frac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho \(a=2008\)và mọi n bằng 2 , 3 , ..... , 2007, ta được:

\(B=\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}< \frac{1}{2007}\)

\(+\left(\frac{1}{2007}\right)^2+...+\left(\frac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho \(a=2007\)và \(n=2007\), ta được:

\(\frac{1}{2007}+\frac{1}{2007^2}+...+\frac{1}{2007^{2007}}< \frac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => \(B< A.\)

4 tháng 4 2018

Ta có : 

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) ( thiếu đề nhé ) 

\(B=\left(2008-1-1-...-1\right)+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

Chúc bạn học tốt ~ 

12 tháng 2 2018

Ta có :

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

12 tháng 2 2018

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)

\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)

\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)

\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)

Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)

\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)

Bí òi

31 tháng 8 2020

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...............+\frac{2}{2007}+\frac{1}{2008}\)

\(B=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+........+\left(1+\frac{1}{2008}\right)+1\)

\(B=\frac{2009}{2}+\frac{2009}{3}+..............+\frac{2009}{2008}+\frac{2009}{2009}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2009}\right)\)

Khi đó: \(\text{​​}\text{​​}\text{​​}\frac{A}{B}=\frac{1}{2009}\)

Chuc bạn học tốt!!

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}}{2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)}\)

hay \(\frac{A}{B}=\frac{1}{2009}\)

6 tháng 1 2017

A:B=1:2

6 tháng 1 2017

a:b=1:4

k nhé